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a b s t r a c t

Detecting lines correctly from a digital image is an important crucial step in many real-word applications.
In this paper, we present an orientation-based strategy to filter out those inappropriate edge pixels before
performing the line-detection task. Due to the effective strategy, both the memory size and the compu-
tation time are significantly reduced during a Hough transform-based detection process. Further, the pro-
posed elimination strategy can also speed up the randomized-based detection process. Taking four
previously developed line-detection techniques as comparison targets, experimental results have shown
that our proposed orientation-based elimination strategy is superior to the previous line-detection meth-
ods in terms of memory requirement and computation time.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Detecting lines in a digital image (Illingworth and Kittler, 1988;
Leaver, 1993; Kälviäinen et al., 1995) is a very important and fun-
damental operation in image processing (Gonzalez and Wood,
2002), pattern recognition, machine vision (Hough, 1992; Jain
et al., 1995; Davies, 2004), and computer vision (Forsyth and
Ponce, 2002). The detected lines are very useful in many applica-
tions, such as document analysis (Jiang et al., 1997), autonomous
vehicle navigation (Tsai et al., 2007; Lin et al., 2008), content-based
image and video retrieval (Su et al., 2007), stereo matching (Long
and Kanade, 1997), and so on.

Previously, many efficient deterministic algorithms have been
presented (Hough, 1962; Duda and Hart, 1972; Illingworth and Kit-
tler, 1987; Ben-Tzvi and Sandler, 1990; Aghajan and Kailath, 1994;
Murakami and Naruse, 2000; Climer and Bhatia, 2003; Cha et al.,
2006; Schindler, 2006; Chung et al., 2009). Among these determin-
istic algorithms, the Hough transform (HT) (Duda and Hart, 1972),
called the DHT, is the most popular line-detection algorithm. How-
ever, it is memory- and time-consuming since it needs a 2D accu-
mulator array to perform a voting process. In (Illingworth and

Kittler, 1987) presented an adaptive HT scheme and arranged it
in a coarse-to-fine manner to detect lines by using a smaller accu-
mulator array. Murakami and Naruse (2000) proposed an efficient
line-detection algorithm which could choose the region-of-interest
to perform HT. Further, based on the line segments detected from
an interested region, an extension process is applied to find more
line segments. Ben-Tzvi and Sandler (1990) presented a combina-
torial HT to speed up the voting process in the HT. Instead of con-
sidering all possible combinations of normal angles and distances,
the combinatorial HT only checks all possible combinations of two-
point line segments to reduce the computation time. Climer and
Bhatia (2003) presented a local line-based HT which applies the
slope mask with a small 3D accumulator array to each edge pixel
for detecting lines passing through it. Cha et al. (2006) presented
an extended HT (EHT) to detect line segments and the most dis-
tinctive advantage of the EHT is the ability to detect any line seg-
ment with desired length. Later, Chung et al. (2009) presented an
advanced EHT to further improve the performance of the original
EHT.

Besides the above deterministic HT-based algorithm, the ran-
domized algorithm is another efficient line-detection paradigm
(Fischler and Firschein, 1978; Fischler and Bolles, 1981; Xu et al.,
1990; Xu and Oja, 1993; Kälviäinen and Hirvonen, 1997; Chutatape
and Guo, 1999; Kyrki and Kälviäinen, 2000; Chen and Chung, 2001;
Chung and Huang, 2007). (Fischler and Bolles, 1981; Fischler and
Firschein, 1978) presented a random sample consensus technique
for line-detection. (Xu et al., 1990; Xu and Oja, 1993) proposed a
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randomized HT (RHT). Kälviäinen and Hirvonen (1997) proposed a
connective RHT (CRHT) which improves the RHT by exploiting the
connectivity of local edge pixels. Based on the concept of seed
point, Chutatape and Guo (1999) proposed a modified RHT
(MRHT). Later, Kyrki and Kälviäinen (2000) proposed an extension
version of CRHT (ECRHT). Based on the evidence-based sampling
technique, Chen and Chung (2001) later proposed a faster random-
ized algorithm for detecting lines, called the RLD. Recently, Chung
and Huang (2007) presented a look-up table-based (LUT-based)
approach to speed up the RLD. The above randomized line-detec-
tion approach can save memory as well as computation time.

This paper presents an orientation-based approach that can im-
prove simultaneously the HT-based algorithm and the randomized
algorithm. The proposed orientation-based approach can classify
edge pixels into several sets and each set is composted of edge pix-
els with similar gradient orientations. Thus, for an HT-based algo-
rithm, the voting process only requires a smaller 2D accumulator
array to record the gradient orientations of related edge pixels. Be-
sides memory-saving, a smaller accumulator array indicates that
the computation time is also significantly reduced since much less
amount of quantized normal angles are considered in the voting
process. For a randomized approach, since the edge pixels con-
tained in an edge-pixel set have similar gradient orientations, it
is very likely that the chosen edge pixels are colinear. When deal-
ing with colinear edge pixels, the time required in the voting pro-
cess can be reduced and it would save the computation time
significantly. Thus, a randomized algorithm would have a good
speed up when executing the proposed orientation-based strategy.
To conduct a fair performance evaluation process, the computation
time consumed in the orientation-histogram construction process
and the inappropriate edge pixels elimination process is included
in the total execution-time. For comparison purpose, we chose
the DHT (Duda and Hart, 1972), the EHT (Cha et al., 2006), the
RLD with LUT (Chung and Huang, 2007), called RLDL, and the
MRHT (Chutatape and Guo, 1999) as the representatives in our
experiments. Experimental results have justified the above advan-
tages of our proposed orientation-based elimination strategy for
the DHT, the EHT, the RLDL, and the MRHT.

The remainder of this paper is organized as follows. In Section 2,
our proposed orientation–elimination strategy is presented. In Sec-
tion 3, following the orientation–elimination strategy, the line-
detection algorithms of four existing ones are presented. In Section
4, experiments are conducted to show the advantages of our algo-
rithms. Concluding remarks are drawn in Section 5.

2. The orientation–elimination strategy

Given an image f , the edge map can be obtained by using the
Canny edge detector (Canny, 1986). For the edge pixel at position
ðx; yÞ, the gradient orientation AGðx; yÞ can be computed by

AGðx; yÞ ¼ tan�1 ryf ðx; yÞ
rxf ðx; yÞ ; ð1Þ

where f ðx; yÞ denotes the image pixel at position ðx; yÞ;rxf ðx; yÞ and
ryf ðx; yÞ are the gradients obtained by running the two masks
shown in Fig. 1a and b on f ðx; yÞ, respectively.

Based on the obtained edge pixels, we can construct a K-level
orientation-histogram as follows:

sðx; yÞ ¼
round K�AGðx;yÞ

p

� �
mod K; if 0 6 AGðx; yÞ < p

2 ;

round K�ðAGðx;yÞþpÞ
p

� �
mod K; if � p

2 6 AGðx; yÞ < 0;

8><
>:

ð2Þ

where for each edge pixel f ðx; yÞwith orientation AGðx; yÞ, sðx; yÞ de-
notes the index of the assigned angle slot in the K-level orientation-
histogram. For example, let K ¼ 18, then the 18-level orientation-
histogram has 18 quantized angle slots, say h0; h1; . . . and h17. Here,
hi can be treated as a set of edge pixels whose AG values satisfy
ð10� i� 5Þ < AG 6 ð10� iþ 5Þ. Fig. 2a illustrates the input gray
image and Fig. 2b depicts the resultant edge map using the Canny
edge detector. When running the Canny edge detector on an input
image, the above two rules indicate that the orientations of all edge
pixels can be obtained simultaneously. Fig. 3 depicts that the 18-le-
vel orientation-histogram of all the determined edge pixels for
Fig. 2a. For fairness, the experiments in Section 4 include the extra
time requirement for computing all the orientations and for con-
structing the orientation-histogram.

At the end of this section, based on the K-level constructed ori-
entation-histogram, we present an orientation–elimination strat-

-1
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1

1 1 1

-1 -1

Fig. 1. Two kinds of masks for computing gradients. (a) X-directional mask. (b) Y-
directional mask.

Fig. 2. The input gray image and its corresponding edge map. (a) The input gray
image. (b) The obtained edge map by using the Canny edge detector.

Fig. 3. The orientation-histogram of all the determined edges for Fig. 2a.
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A digital line

Fig. 4. A digital true line with bandwidth D.
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egy to help us to discard those inappropriate edge pixels in order to
speed up the line-detection process.

Since the number of edge pixels along a digital true line with
bandwidth D (see Fig. 4) should be larger than a pre-determined
threshold To, we can utilize the threshold To as a filter to discard
those inappropriate edge pixels which are in the same quantized
slot. The frequency of those discarded inappropriate edge pixels
should be less than To. According to this orientation–elimination
strategy, the orientation-histogram is transformed into a simplified
version of orientation-histogram after filtering out those inappro-
priate edge pixels. For example, Fig. 5 is the simplified orienta-
tion-histogram of Fig. 3. Comparing the orientation-histogram in
Fig. 3 and the simplified orientation-histogram in Fig. 5, as a filter,
the threshold To (=100) does discard those inappropriate edge pix-
els since they make no contribution to true lines. Instead of consid-
ering all the eighteen quantized angle slots in Fig. 3, h0; h1; . . ., and
h17, we only consider five quantized angle slots in Fig. 5, h1,
h2; h3; h10, and h11. This selection leads to a significant computa-
tion-saving effect. Since those valid edges may sit along several dif-
ferent lines, a voting process is still needed to examine which lines
are true lines.

3. Four improved line-detection algorithms using the
orientation–elimination strategy

In this section, our proposed orientation–elimination strategy
will be used to speed up several existing line-detection algorithms,
including the DHT, the EHT, the RLDL, and the MRHT. For conve-
nience, the four improved line-detection algorithms are called
the IDHT, the IEHT, the IRLDL, and the IMRHT, respectively.

3.1. Improvement of HT-based line-detection methods

3.1.1. The improved DHT: IDHT
In this subsection, the proposed orientation-based elimination

strategy cooperates with the DHT, called the IDHT, is introduced.
This improvement can speed up the DHT and reduce its memory
requirement. In the DHT, a straight line in an image is parameter-
ized in normal form by q ¼ x cos hþ y sin h where ðx; yÞ denotes the
coordinates of the edge pixels on a straight line; q and h denote the
normal distance from the origin to the line and the angle between
the normal line and positive x-axis. Essentially, the DHT consists of
two processes: (1) the voting process in the accumulator array and
(2) the searching process for finding the desired line in the accu-
mulator array. After finishing the voting process for all edge pixels,
the searching process selects the cells whose scores are larger than
a specified threshold in the accumulator array, and then their cor-
responding parameters are recognized as the parameters of the de-
sired lines in an image. Fig. 6 depicts the used accumulator array in
the DHT for �

ffiffiffi
2
p

N 6 q 6
ffiffiffi
2
p

N and 0 6 h < 180; N denotes the
longer length of the height and the width of an input image.

However, the memory space required in the DHT is dependent
on the number of quantized angles and quantized normal dis-
tances. Based on our proposed orientation-based elimination strat-
egy, we now present the IDHT to reduce the memory space and the
time required in the DHT.

Taking Fig. 2a as an example, we can obtain the corresponding
orientation-histogram as shown in Fig. 5. In Fig. 5, there are five
angle slots. Each of them contains more than Toð¼ 100Þ edge pixels.
Consequently, our proposed IDHT only focuses on these five angle
slots. On the other hand, the normal angles considered in the accu-
mulation array in the proposed IDHT are limited within 6�—15�,
16�—25�, 26�—35�, 96�—105� and 106�—115�. The hatched area in
Fig. 7 denotes the considered normal angles which we should con-
sider in the voting process. Here the basis unit of quantized angle
and that of quantized normal distance are set to one degree and 1,
respectively. Each time only those edge pixels in the same angle
slot are considered in the line-detection process. In the proposed
IDHT, it only needs a small accumulator array to handle the voting
process for all angle slots. For the ith angle slot, the horizontal
coordinates of the used small accumulator array are ranged from
ð10� i� 5Þ to ð10� iþ 5Þ; the vertical coordinates are ranged
from �

ffiffiffi
2
p

N to
ffiffiffi
2
p

N. Thus, the ratio of the voting space in the

Fig. 5. The simplified orientation-histogram of Fig. 3 after discarding inappropriate
edge pixels for To ¼ 100.
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Fig. 6. The accumulation array used in the DHT.
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Fig. 7. The hatched area denotes the considered normal angles.
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proposed IDHT over the DHT is 5:6% ¼ ð10�iþ5Þ�ð10�i�5ÞÞ
180

� �
. From the

small accumulator array, the IDHT has great improvement on the-
oretical execution-time of the IDHT over the DHT. The improve-
ment is 94:4% ¼ 1�5:6%

1

� �
. In Section 4, the experimental results

show that the average execution-time improvement ratio of the
proposed IDHT over the DHT is 94.2% and it is close to the theoret-
ical execution-time improvement ratio. Our proposed IDHT is
listed below.

Step 1. Let the angle slot hi, 0 6 i 6 17, contain the set of edge pix-
els, Vi ¼ fvk ¼ ððxk; ykÞ;OkÞj for 1 6 k 6 jVij where ðxk; ykÞ
and Ok denote the location and the orientation of the edge
pixel vk}. According to Eqs. (1) and (2), we put the coordi-
nates of all edge pixels into the corresponding angle slots.
Let Tl be a given threshold which denotes the number of a
true line should have at least Tl edge pixels. Initialize i ¼ 0,
and go to Step 2.

Step 2. If jVijP To, where To is the least number of edge pixels
that the angle slot hi should have, go to Step 3; otherwise,
go to Step 5.

Step 3. We set up the small accumulation array, A, such that the
horizontal coordinates are ranged from ð10� i� 5Þ to
ð10� iþ 5Þ and the vertical coordinates are ranged from
�

ffiffiffi
2
p

N to
ffiffiffi
2
p

N. For each edge pixel vk ¼ ðxk; ykÞ whose ori-
entation is within the angle interval ð10� i� 5;10� iþ 5Þ,
we compute the normal distance by qk ¼ xk cos hþ yk sin h
for all quantized angles in the angle interval and then we
perform the voting operation A½h�½qk� ¼ A½h�½qk� þ 1. Go to
Step 4.

Step 4. Check all entries of the array A, if A½h�½q�P Tl, it infers that
there is a true line Lc which satisfies q ¼ x cos hþ y sin h,
where ðx; yÞ is on Lc. Go to Step 5.

Step 5. Perform i ¼ iþ 1. Check i whether it is larger than 17 or
not. If yes, we stop the algorithm; otherwise, go to Step 2.

3.1.2. The improved EHT: IEHT
In this subsection, we put the proposed orientation–elimination

strategy into the previous EHT, called the IEHT, to improve the per-
formance of previous EHT. The most distinctive advantage of the
EHT method is the ability to detect any line segment with designated
length. Further, it also can detect the starting point and ending point
of each detected line segment. For each edge pixel, the voting process
is performed in two 3D Hough spaces. A 3D Hough space consists of a
set of 2D Hough planes. The voting process is able to detect line seg-
ments. In the EHT method, each 2D Hough plane is used to collect the
evidence of the line segments which is passing through a specific col-
umn of the input image. Considering the first column of the edge
map, the edge pixel is selected one by one in top–down manner.
For each selected edge pixel with location ðx; yÞ, 0 6 x 6 w� 1 and
0 6 y 6 h� 1 where w and h denote the width and height of the in-
put image, a slope–intercept equation b ¼ �axþ y is created, and
then the voting process is performed in the first Hough plane of
the first Hough space for �1 < a 6 1 corresponding to the angle
range ð�45�;45��; after rotating the x and y axes by 90�, i.e. mapping
the edge pixels with location ðx; yÞ into the one with location ð�y; xÞ,
the voting process is performed in the first Hough plane of the second
Hough space. Note that each edge pixel in the first column of the edge
map must perform two voting processes for the first and second
Hough spaces. Based on the same concept, for the second column
of the edge map, the above two voting processes are applied to the
second Hough plane of the first Hough space and the second Hough
space, and so on. After finishing the voting processes for the last col-
umn of the edge map, we sum up the votes of each pair of a and b
through all Hough planes of each Hough space. For each pair of a
and b, if the number of total votes is larger than a pre-defined thresh-
old, it can be claimed that the input image has a line segment with

the parameters a and b and its starting point and ending point can
be determined by checking the number of votes of each Hough
planes.

Based on the constructed orientation-histogram mentioned
above, the proposed orientation-based elimination strategy can
still be used to discard those inappropriate edge pixels originally
considered in the EHT. For the ith angle slot, if the value of
10� i� 45 is within the range ð�45�;45��, the first Hough space
is used to perform the voting process; otherwise, the voting pro-
cess is performed in the second Hough space. Since for each angle
slot, only the first Hough space or the second Hough space is used
to performed the voting process, we can use only one accumulator
array to implement the proposed IEHT. Thus, the proposed IEHT
only requires 50% memory space when compared to the EHT. Fur-
ther, the IEHT also reduces about 50% voting time of the EHT, thus
the theoretical voting time improvement ratio of the IEHT over the
EHT is 50%. From our experiments, we find that the ratio of the
average voting time over the total execution-time is about 50%,
so the theoretical execution-time improvement ratio of the IEHT
over the EHT is about 50%� 50% ¼ 25%. In Section 4, the experi-
mental results show that the average execution-time improvement
ratio of the proposed IEHT over the EHT is 27.6% and it is close to
the theoretical execution-time improvement ratio.

3.2. Improve the previous randomized line-detection methods

3.2.1. The improved RLDL: IRLDL
In this subsection, based on the proposed orientation-based

elimination strategy, we present an improved randomized line-
detection algorithm, the IRLDL.

In the RLDL, it randomly selects three edge pixels each time to
check whether they can construct a possible line or not. Let
v1 ¼ ðx1; y1Þ, v2 ¼ ðx2; y2Þ, and v3 ¼ ðx3; y3Þ denote the three se-
lected edge pixels. For the edge pixels v1 and v2, a line L12 can be
determined and then we calculate the distance d3!i12 between v3

and L12. If the distance d3!i12 is less than the specified threshold
T2 where T2 is set to 1 empirically, L12 is a possible line and then
a voting process based on the LUT-based platform is performed
to determine whether L12 is a true line or not. According to v1

and v2, Bresenham’s line drawing procedure (Hearn and Baker,
1997) is used to draw L12 on the 2D binary array where bit ‘1’ in
the entry denotes the corresponding pixel in the original edge
map passing through the banded possible line for D ¼ 1. The 2D
binary array Alut associated with the drawn banded possible line
is called the LUT-based platform. From Alut , each input edge pixel
vk ¼ ðxk; ykÞ is used as the key to perform the query on the LUT-
based platform Alut . If Alutðxk; ykÞ ¼ 1, it means that the edge pixel
vk is on L12 and it contributes a vote to the possible line. The total
number of edge pixels contributing to L12 is used to determine
whether the possible line is a true line or not. If L12 is a true line,
all edge pixels lying on it are taken out from the edge pixel set
and the RLDL selects next three edge pixels to detect the remaining
lines in the image. In the RLDL, if the selected three edge pixels
cannot help us to detect a true line, it is called a failed selection.
If the number of successive failed selections is larger than the
threshold Tf , it indicates that all true lines in the input image have
been detected, and then the RLDL can be stopped.

In the RLDL, it’s time-consuming to handle the redundant voting
processes for those failed selections. Thus, the total voting time of
the RLDL is dominated by the threshold Tf . We now present an im-
proved RLDL, called the IRLDL, to solve the above problem. In our
proposed IRLDL, the edge pixels belonging to the same angle slot
are stored in the same edge-pixel set. A possible line is determined
by three edge pixels selected from the same angle slot since they
should have similar gradient angles. Under these circumstances,
we are able to discard the considerations of inappropriate possible

14 K.-L. Chung et al. / Pattern Recognition Letters 31 (2010) 11–19
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lines. On the other hand, for each feasible possible line, the voting
process is performed only on the corresponded angle slot and its
two neighboring angle slots. Since the inappropriate possible lines
are all discarded, we can set a smaller Tf for each angle slot.

Let the ratio Pi denote the number of edge pixels in the ith angle
slot over that of total edge pixels and naturally it is defined by

Pi ¼
jVi jP17

j¼0
jVj j

jVij > To;

0 otherwise;

8<
: ð3Þ

where jVij denotes the number of edge pixels in the ith angle slot
and To has been defined in Section 2. According to the definition
of Pi, naturally the threshold of successive failed selections for the
ith angle slot can be determined by Ti

f ¼ Tf � Pi. From the deter-

mined threshold Ti
f , the ith angle slot needs to perform the voting

process Ti
f times at most; in each voting process, at most jVij edge

pixels are required to query on the LUT-based platform ALUT . For
simplifying the analysis, the voting time for the ith angle slot is lin-
early proportional to Ti

f � jVij and the theoretical voting time
improvement ratio of the proposed IRLDL over that of the RLDL is
Tf�jV j�

P17

i¼0
ðTi

f�jVi jÞ
Tf�jV j

¼ Tf�
P17

i¼0
Ti

f�Pi

Tf
. From our experiments, we find that

the ratio of the average voting time over the total execution-time
is 60%, and the theoretical execution-time improvement ratio of

the proposed IRLDL over that of the RLDL is
Tf�
P17

i¼0
Ti

f�Pi

Tf
� 60%. For

example, from Figs. 2, 3, and 5, the number of edge pixels in
Fig. 2b is 2187, and jV1j, jV2j, jV3j, jV10j, and jV11j are 331, 513,
132, 628, and 315, respectively. The values of T1

f , T2
f , T3

f , T10
f , and

T11
f are 0:15Tf , 0:23Tf , 0:06Tf , 0:29Tf , and 0:14Tf , respectively.

Therefore, for Fig. 2a, the theoretical execution-time improvement
ratio of the proposed IRLDL over that of the RLDL is

49% ¼ Tf�ð0:15�T1
f þ0:23�T2

f þ0:06�T3
f þ0:29�T10

f þ0:14�T11
f Þ

Tf
� 60%

� �
. In Section 4,

experimental results show that the execution-time improvement
ratio of the proposed IRLDL over that of the RLDL is 52.0% for
Fig. 2a (see Table 3) and it is close to the theoretical execution-time
improvement ratio. Note that the voting space required in the IRLDL
is the same as that in the RLDL since the accumulator array is
unnecessary for the RLDL. Our proposed IRLDL is shown below.

Step 1. Let the angle slot hi, 0 6 i 6 17, contain the set of the edge
pixels Vi ¼ fvk ¼ ððxk; ykÞ;OkÞj for 1 6 k 6 jVij where
ðxk; ykÞ and Ok denote the location and the orientation of
the edge pixel vk}. According to Eqs. (1) and (2), we put
the coordinates of all edge pixels into the corresponding
angle slots. Let Tf be a given threshold to denote the num-
ber of failures that we can tolerate. The two thresholds, To

and Tl, have been defined in Steps 1 and 2 of the IDHT. Ini-
tialize i ¼ 0, and go to Step 2.

Step 2. If jVijP To, set Ti
f ¼ Tf � jVi jP17

j¼0
jVj j

and let the failure counter

be f ¼ 0; otherwise, go to Step 8.
Step 3. If f ¼ Ti

f or jVij < Tl, go to Step 8; otherwise, we randomly
select three edge pixels vk, k ¼ 1;2;3, from Vi. When vk

has been taken away from the set Vi, 1 6 k 6 3, set
Vi ¼ Vi � fvkg.

Step 4. Based on the three selected points vk for k ¼ 1;2;3, deter-
mine the line L12 and check the following two conditions.

Condition 1: The values of jAGðx1; y1Þ � AGðx2; y2Þj, jHþ
p
2 � AGðx1; y1Þj, and jHþ p

2 � AGðx2; y2Þj are
all less than the specified threshold T1 where
H ¼ tan�1 ðy1�y2Þ

ðx1�x2Þ
is used to represent the

angle between L12 and x-axis and T1 is set
to 2p

180 empirically.

Condition 2: The distance between L12 and v3 is less than
the specified threshold T2 where T2 is set to
1 empirically.If the above two conditions
are satisfied, L12 is a possible line and go to
Step 5; otherwise, put vk for k ¼ 1;2;3, back
to Vi, and perform f ¼ f þ 1; go to Step 3.

Step 5. We initialize each entry of the voting platform Alut . Set the
counter C ¼ 0. We then set up the possible line on the
LUT-based platform Alut . For each element vk in
Vi
S

Vi�1
S

Viþ1, we use the location of vk, ðxk; ykÞ, as the
key to vote on the array Alut . If Alutðxk; ykÞ ¼ 1, perform
C ¼ C þ 1 and take vk out of Vi.

Step 6. Assume there are lp edge pixels on the possible line, i.e.
C ¼ lp. If C > Tl, go to Step 7; otherwise, we regard the
possible line be a false line and return these lp edge pixels
to Vi; f ¼ f þ 1, and go to Step 3.

Step 7. The possible line has been determined as a true line. Go to
Step 3.

Step 8. Perform i ¼ iþ 1. Check i whether it is larger than 17 or
not. If yes, we stop the algorithm; otherwise, go to Step 2.

3.2.2. The improved MRHT: IMRHT
In this subsection, we put the proposed orientation-based elim-

ination strategy into the previous MRHT, called IMRHT, to speed up
the MRHT. In the previous MRHT, a straight line in an image is
parameterized in normal form by q ¼ x cos hþ y sin h that has been
described in Section 3.1.1. From the set of n edge pixels
fðxi; yiÞji ¼ 1;2; . . . ;ng in the input image, the MRHT randomly
picks one edge pixel ðxm; ymÞ as the seed and then the voting pro-
cess is performed in the accumulator array AðhÞ, 0 6 h < 180, to de-
tect the straight lines passing through the seed point. By pairing
each remaining edge pixel ðxj; yjÞ with the seed point ðxm; ymÞ, a
straight line can be determined and the normal angle h can be
solved by

h ¼ tan�1 xj � xm

ym � yj

 !
: ð4Þ

From the obtained h, we increase the value of AðhÞ by one. The vot-
ing process for the specified seed point ðxm; ymÞ continues until each
pair of points fðxm; ymÞ; ðxj; yjÞj for j ¼ 1;2; . . . n and j–mg is pro-
cessed. After all procedures for the specified seed point ðxm; ymÞ
have been finished, the votes in the AðhÞ can be further detected.
If the votes of one cell AðhmÞ is larger than the predefined global
threshold, the detected straight line is determined by ðxm; ymÞ and
hm. By the same argument, the new seed point is selected randomly
to perform the above voting process.

Based on the constructed orientation-histogram mentioned
above, the pair of a specified seed point ðxm; ymÞ and one of
the remaining edge pixel ðxj; yjÞ are selected from the same angle
slot since they have similar gradient angles. Thus, the MRHT can
be improved by the proposed orientation-based strategy. In what
follows, we use Fig. 2a as an example to analyze the voting time
improvement advantage of the IMRHT. Fig. 2a contains four
lines, so each edge pixel may be considered at most four times
in the four voting processes for detecting four lines. In the pro-
posed IMRHT, the four lines can be classified into two groups
and each group includes two lines with similar orientations.
Thus, each angle slot contains at most two lines and each pixel
is involved in the voting processes of two lines at most in the
IMRHT. Therefore, the theoretical voting time improvement ratio
of IMRHT over the MRHT is 50% ¼ 4�2

4

� �
for Fig. 2a. Since the

time required in the voting process of the MRHT is almost equal
to the total execution-time, the theoretical execution-time
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improvement is also 50% for Fig. 2a. In Section 4, experimental
results show that the execution-time improvement ratio of the
proposed IMRHT over that of the MRHT is 55% for Fig. 2a (see
Table 3) and it is close to the theoretical execution-time

improvement ratio. Note that the voting space required in the
IMRHT is the same as the that in the MRHT since the MRHT only
uses a small accumulator array to deal with the voting process
of each seed point.

Fig. 8. Three testing images. (a) Floor image (b) Road image. (c) Window image.

Fig. 9. The resultant detected lines by using the DHT. (a) Detected lines for floor image. (b) Detected lines for road image. (c) Detected lines for window image.

Fig. 10. The resultant detected lines by using the IDHT. (a) Detected lines for floor image. (b) Detected lines for road image. (c) Detected lines for window image.

Fig. 11. The resultant detected lines by using the EHT. (a) Detected lines for floor image. (b) Detected lines for road image. (c) Detected lines for window image.
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4. Experimental results

In this section, we show the performance improvement after
employing our proposed orientation-based elimination strategy
into the previous four line-detection methods. For fairness, the

experiments include the extra time requirement for computing
all the orientations and for constructing the orientation-histogram.
Experimental results have justified the advantages of our proposed
orientation-based elimination strategy. The concerned algorithms
are implemented on the IBM compatible computer with Pentium

Fig. 12. The resultant detected lines by using the IEHT. (a) Detected lines for floor image. (b) Detected lines for road image. (c) Detected lines for window image.

Fig. 13. The resultant detected lines by using the RLDL. (a) Detected lines for floor image. (b) Detected lines for road image. (c) Detected lines for window image.

Fig. 14. The resultant images by using the IRLDL. (a) Detected lines for floor image. (b) Detected lines for road image. (c) Detected lines for window image.

Fig. 15. The resultant detected lines by using the MRHT. (a) Detected lines for floor image. (b) Detected lines for road image. (c) Detected lines for window image.
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IV CPU 3.2GHz and 1GB RAM. The operating system used is MS-
Windows XP and the program developing environment is Borland
C++ Builder 6.0. Fig. 8 illustrates the used three testing images
where each image is of size 256� 256.

After running the four algorithms on the images shown in Fig. 8,
the resultant detected lines of the DHT, the IDHT, the EHT, the
IEHT, the RLDL, the IRLDL, the MRHT, and the IMRHT are shown
in Figs. 9–16, respectively. In our experiments, the number of angle
slots K is set to 18 and the thresholds To, Tl, and Tf are set to 100,
100, and 10000, respectively. The ratio of the memory required in
the IDHT (IEHT) over the DHT (EHT) is 5.6% (50%). The memory re-
quired in the IRLDL (IMRHT) is the same as that in the RLDL
(MRHT). The average execution-time improvement ratios of the

proposed improved line-detection methods over the previous
methods are listed in Tables 1–4 where the symbol ‘ms’ denotes
milliseconds. From the four tables, it is observed that the execu-
tion-time improvement ratios of our proposed four improved
methods, the IDHT, the IEHT, the IRLDL, and the IMRHT, over the
previous methods are 94.2%, 27.6%, 58%, and 60.8%, respectively.

5. Conclusions

We have proposed a new orientation-based elimination strat-
egy for line-detection. Based on the constructed orientation-histo-
gram, the proposed orientation-based elimination strategy can be
used to discard those inappropriate edge pixels to improve the per-
formance of four existing methods. Based on three test images,
experimental results demonstrate that the execution-time
improvement ratios of our methods, the IDHT, the IEHT, the IRLDL,
and the IMRHT, over the four existing methods are 94.2%, 27.6%,
58%, and 60.8%, respectively. Further, the ratio of the memory re-
quired in the IDHT (IEHT) over the DHT (EHT) is 5.6% (50%) and
the memory required in the IRLDL (IMRHT) is the same as that in
the RLDL (MRHT). Our orientation elimination-based strategy has
been applied to speed up the computation of line-detection
successfully.
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