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In this paper, we present a novel edge sensing-based demosaicing algorithm for digital time delay and
integration (DTDI) mosaic images, which are captured by DTDI line-scan cameras and suitable for indus-
trial print inspection. We propose to use Sobel- and interpolation-based masks to extract more accurate
gradient information in the color difference domain. The extracted gradient information is utilized to
assist the design of the proposed demosaicing algorithm. By experimenting on more than one thousand
and three hundred test DTDI mosaic images, the results demonstrate the efficiency of the proposed
demosaicing algorithm in terms of demosaiced image quality.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Recently, digital cameras are getting more popular in consumer
electronics market. Fig. 1 illustrates the structure of a three charge-
coupled device or complementary metal-oxide–semiconductor
(CCD/CMOS) sensors digital camera. From Fig. 1, it is observed that
after passing through the camera lens and the optical filter, a light
path would be divided into three color components, which corre-
sponds to the tristimulus values of a scene. However, this structure
needs three CCD/CMOS sensors to produce a color image and this is
costly. To cut down the cost, most manufacturers use a single CCD/
CMOS sensor with the Bayer color filter array (CFA) structure
[1,5–7,16,19] to capture the color information. The structure of a
single CCD/CMOS sensor digital camera is illustrated in Fig. 2.
Based on the Bayer CFA structure shown in Fig. 3, each pixel in
the structure has only one color component. Because the green
(G) component is the most important factor to determine the lumi-
nance of a color image, half of the pixels in the Bayer CFA structure
are assigned to G component. The red (R) and blue (B) components
share the remaining parts evenly.

In the field of industrial inspection systems, line-scan cameras
are mostly used for the examination of fine details [2]. Because
ll rights reserved.
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of the short exposure time and high-speed transport restrictions,
in many cases, it is very difficult to increase the intensity of the
illumination. Therefore, some special image formations or tech-
niques, such as high dynamic range imaging (HDR) [8] or time de-
lay and integration (TDI) [21], are demanded to maintain image
quality while the quantity of available light decreases. Nowadays,
digital time delay and integration (DTDI) line-scan cameras
[2,9,12] based on CMOS sensors with the Bayer CFA structure
and field programmable gate arrays (FPGAs) have been developed
for the industrial applications because they have the advantages of
low power consumption, low production cost, and high-speed. For
DTDI line-scan cameras, instead of scanning moving objects row by
row, a large number of rows, which are sequentially accumulated
in their responses, are exposed in parallel. Further, the object will
be moved by one row after each exposure, so each object pixel is
not captured only once. In fact, the number of times which each
object pixel is captured is as many as the DTDI stages. Finally,
the output of each pixel is collected by the responses of the partial
exposures.

Fig. 4 illustrates an example of the principle of a DTDI line-scan
camera. From Fig. 4, it is observed that the design of a DTDI line-
scan camera is based on a Bayer CFA and some delay stages. These
delay stages are denoted as z�1 and are used to integrate two con-
secutive rows captured at different time instants. For each expo-
sure, either BG-row or GR-row would be captured and delivered.
This indicates that each object pixel will be captured by either
the G and R components or the G and B components alternately.
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Fig. 1. The structure of a three CCD/CMOS sensor digital camera.

Fig. 2. The structure of a single CCD/CMOS sensor digital camera.
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Fig. 5. DTDI structure.
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The capturing and delivering process would continue until the
number of required DTDI stages is reached, and then the output
of each pixel could be computed. For this example with four DTDI
stages, the resultant output of each pixel could be computed by the
following rule:

B02m ¼ B0;2m þ B2;2mz�2;

G02m ¼ G1;2mz�1 þ G3;2mz�3;

G02mþ1 ¼ G0;2mþ1 þ G2;2mþ1z�2;

R02mþ1 ¼ R1;2mþ1z�1 þ R3;2mþ1z�3:

Images captured by a DTDI line-scan camera are called DTDI mosaic
images. Fig. 5 illustrates the structure of a DTDI mosaic image
where each pixel has two color components, i.e., G and R, or G
and B.

Since a full-color image is preferable to the human visual sys-
tem, the missing color component of each pixel in a DTDI mosaic
image should be recovered as much as possible and such a recov-
ery is called a demosaicing process. Among the existing demosaic-
ing algorithms, bilinear interpolation [9,20] is the simplest
demosaicing algorithm in which the unknown color component
of each pixel is obtained by averaging its two neighboring pixels.
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Recently, Heiss-Czedik et al. [12] modified Laroche and Prescott’s
algorithm [14] and Hamilton and Adams’ algorithm [11] to deal
with DTDI mosaic images. In [12], Heiss-Czedik et al. also pre-
sented DTDI demosaicing algorithms based on the weighted abso-
lute interpolation and least squares approximation, respectively.
After examining the previously developed demosaicing algorithms,
we find that the quality of a demosaiced image is strongly
dependent on the extracted gradient/edge information from the in-
put DTDI mosaic images. In addition, for the previously proposed
demosaicing algorithms, such as [4,11,12], the gradient informa-
tion is extracted in the spacial domain and the interpolation
process is based on the color difference domain. The gradient infor-
mation extracted in the spacial domain might not be able to take
on the gradient information in the color difference domain. It
would result in the degradation of the estimating accuracy in the
demosaicing process. Although for the Bayer CFA with one compo-
nent in each pixel, Chung and Chan [3] proposed an efficient demo-
saicing algorithm exploiting the integrated gradient information,
which is formed by the combination of the gradient information
extracted in the spacial and color difference domains, their algo-
rithm is specifically designed for the Bayer CFA and the design of
the related masks widely depends on the Bayer CFA structure,
implying that Chung and Chan’s algorithm cannot be directly ap-
plied to DTDI mosaic images in which each pixel consists of two
color components, namely the G and R components or the G and
B components. Further, it is very difficult to modify their masks
to deal with DTDI structure since these masks are designed accord-
ing to the arrangement of the color components in the Bayer CFA
structure (see Fig. 3), which is quite different from that in the DTDI
mosaic image (see Fig. 5). Thus, the main motivations of this work
is twofold. In the first place, develop a new approach to extract
more accurate gradient information in the color difference domain
directly for DTDI mosaic images. Second, develop a new edge sens-
ing-based demosaicing algorithm, which exploits the extracted
more accurate gradient information, for DTDI mosaic images.

In our proposed algorithm, instead of using SL-based masks [4]
obtained by embedding the luminance estimation mask into Sobel
masks to extract gradient information in the spacial domain, we
use the Sobel- and interpolation-based (SI-based) masks, which
is the combination of Sobel masks and bilinear interpolation, to
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Fig. 6. The flowchart of the proposed demosaicing algorithm.

Fig. 7. The pattern of the DTDI G–R color difference plane.
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extract more accurate gradient information in the color difference
domain. Based on the extracted gradient information, the proposed
new edge sensing-based demosaicing algorithm is developed. Be-
cause both of the gradient information extraction and the edge
sensing-based interpolation processes are based on the same color
difference domain, the proposed demosaicing algorithm would
produce better quality of demosaiced images. Note that for DTDI
mosaic images, there is no demosaicing algorithm, whose gradient
information extraction process and interpolation process are both
based on the color difference domain, to be proposed previously.
Fig. 6 illustrates the flowchart of the proposed demosaicing algo-
rithm. We have tested our algorithm on more than one thousand
and three hundred test DTDI mosaic images. The results demon-
strate that the proposed demosaicing algorithm has better demo-
saiced image quality than five existing demosaicing algorithms in
[12], modified Pei and Tam’s algorithm [18], and modified Chung
et al.’s algorithm [4].

The major novel contributions of this work are stated again as
follows. First, we propose new SI-based masks to extract more
accurate gradient information in the color difference domain di-
rectly. Second, we develop a new edge sensing-based demosaicing
algorithm, which exploits the extracted gradient information in the
color difference domain, for DTDI mosaic images. To the best of our
knowledge, this is the first time such a demosaicing algorithm,
whose gradient information extraction process and interpolation
process are both based on the color difference domain, has been
developed specifically for DTDI mosaic images. Finally, more than
one thousand and three hundred test DTDI mosaic images are used
to evaluate the demosaiced image quality performance and the re-
sults indicate that the proposed algorithm is superior to seven
existing state-of-the-art algorithms.

The remainder of this paper is organized as follows. In Section 2,
the proposed edge sensing-based demosaicing algorithm for DTDI
mosaic images is presented. In Section 3, the experimental results
are shown to demonstrate the advantageous features of the pro-
posed demosaicing algorithm. Finally, concluding remarks are
drawn in Section 4.

2. The proposed edge sensing-based demosaicing algorithm for
DTDI mosaic images

In Section 2.1, we first present how to extract more accurate
gradient information in the G–R and G–B color difference planes.
Then, the edge sensing-based demosaicing algorithm used to
recover the missing R and B color components of a DTDI mosaic
image is presented in Section 2.2. One thing to be noted is that
in previous demosaicing algorithm, e.g., [4,11,12], the gradient
information is extracted in the spacial domain and the interpola-
tion process is based on color difference domain; in the proposed
demosaicing algorithm, both of the gradient information extrac-
tion process and the interpolation process are based on the color
difference domain. Because of the consistency between the gradi-
ent information extraction process and the interpolation process
in the proposed demosaicing algorithm, it would result in produc-
ing better quality of demosaiced images. As shown in Fig. 5, the R,
G, and B color values of the pixel located at the position (i, j) of a
DTDI mosaic image, IDmo, are denoted as Ir

Dmoði; jÞ; I
g
Dmoði; jÞ, and

Ib
Dmoði; jÞ, respectively.
2.1. Extracting more accurate gradient information in color difference
domain

In this sub-section, we present the gradient information extrac-
tion process for the G–R and G–B color difference planes. Since the
gradient information extraction process for the G–R color differ-
ence plane is the same as that for the G–B color difference plane,
we only describe it for the G–R color difference plane. According
to the structure of a DTDI mosaic image, as shown in Fig. 5, the
DTDI G–R color difference plane, Dgr, can be obtained by
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Dgrðigr; jgrÞ ¼ Ig
Dmoðigr; jgrÞ � Ir

Dmoðigr; jgrÞ; ð1Þ

where "(igr, jgr) 2Xgr = {(i ± a, j ± (2b + 1))}. Fig. 7 illustrates the pat-
tern of the DTDI G–R color difference plane. To obtain the fully pop-
ulated G–R color difference plane, bilinear interpolation is used to
estimate the missing pixels in Dgr. Thus, the fully populated G-R col-
or difference plane, eDgr , can be determined by

eDgrði; jÞ ¼
Dgrði; jÞ if ði; jÞ 2 Xgr;

1
2

X
ðx;yÞ2fði;j�1Þg

Dgrðx; yÞ otherwise:

8<: ð2Þ

Next, we use Sobel edge detector [10] to extract gradient informa-
tion. Fig. 8(a)–(c) illustrate the 3 � 3 horizontal, p

4-diagonal, and
�p
4 -diagonal masks of Sobel edge detector, respectively. After
Fig. 11. Based on the DTDI Lighthouse image, the simulation result of each step in the
horizontal gradient response. (c) The p

4-diagonal gradient response. (d) The �p
4 -diagonal g

demosaiced full color image.
running the horizontal, p
4-diagonal, and �p

4 -diagonal masks on a
3 � 3 color difference subplane centered at position (i, j), the hori-
zontal gradient response, DeDh

grði; jÞ, the p
4-diagonal gradient re-

sponse, DeDp
4
grði; jÞ, and the �p

4 -diagonal gradient response, DeD�p
4

gr ði; jÞ,
can be calculated by

DeDh
grði; jÞ ¼

eDgrði� 1; jþ 1Þ þ eDgrðiþ 1; jþ 1Þ
�eDgrði� 1; j� 1Þ � eDgrðiþ 1; j� 1Þ

" #
þ2 eDgrði; jþ 1Þ � eDgrði; j� 1Þ
h i

8>>><>>>:
9>>>=>>>;;

DeDp
4
grði; jÞ ¼

eDgrði� 1; jÞ þ eDgrði; jþ 1Þ
�eDgrði; j� 1Þ � eDgrðiþ 1; jÞ

" #
þ2 eDgrði� 1; jþ 1Þ � eDgrðiþ 1; j� 1Þ
h i

8>>><>>>:
9>>>=>>>;;

DeD�p
4

gr ði; jÞ ¼

eDgrði; jþ 1Þ þ eDgrðiþ 1; jÞ
�eDgrði� 1; jÞ � eDgrði; j� 1Þ

" #
þ2 eDgrðiþ 1; jþ 1Þ � eDgrði� 1; j� 1Þ
h i

8>>><>>>:
9>>>=>>>;:

ð3Þ

To make Sobel edge detector workable on the DTDI G–R color differ-
ence plane directly, bilinear interpolation should be embedded into
Sobel edge detector. Combining Eqs. (2) and (3), the SI-based masks
proposed demosaicing algorithm. (a) The original DTDI Lighthouse image. (b) The
radient response. (e) The resultant image after recovering the R color values. (f) The
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are followed (detailed derivations are shown in Appendix A). Fur-
thermore, the coefficients of the SI-based masks are normalized into
integers to avoid floating point computations. Considering two dif-
ferent cases, the SI-based masks for the pixels at position (i, j) 2Xgr

and (i, j) R Xgr are shown in Figs. 9 and 10, respectively. After run-
ning the appropriate SI-based masks on the 3 � 5 DTDI color differ-
ence subplane centered at the position (i,j), the horizontal gradient
response, DeDh

grði; jÞ, the p
4-diagonal gradient response, DeDp

4
grði; jÞ, and

the �p
4 -diagonal gradient response, DeD�p

4
gr ði; jÞ, can be obtained di-

rectly. For example, based on the input DTDI Lighthouse image
shown in Fig. 11(a), Fig. 11(b)–(d) illustrate the horizontal gradient
response, the p

4-diagonal gradient response, and the �p
4 -diagonal gra-

dient response of each pixel in the G–R color difference plane,
respectively. From Fig. 11(b)–(d), it is observed that the gradient re-
sponses are locally constant in homogeneous regions. In the next
sub-section, the extracted gradient information will be used to
assist the design of the proposed edge sensing-based demosaicing
algorithm.
Table 1
PSNR quality comparison in R color plane for twenty-four test images in Kodak PhotoCD.

Image Algorithm

BI [12] WAI [12] MHA [12] MLP [1

Image01 29.075 32.228 43.721 43.865
Image02 34.087 36.055 40.905 41.302
Image03 37.855 41.247 46.224 46.710
Image04 34.725 36.931 41.391 42.173
Image05 28.397 31.968 42.679 43.129
Image06 32.063 35.111 47.673 47.956
Image07 35.593 39.442 46.021 46.455
Image08 24.442 27.723 41.051 41.185
Image09 34.412 37.675 46.571 46.396
Image10 35.011 38.655 46.159 46.288
Image11 31.322 34.273 44.372 45.010
Image12 36.145 39.565 45.512 45.581
Image13 26.520 29.441 45.396 45.630
Image14 31.399 34.412 40.575 41.671
Image15 32.214 35.453 39.254 39.431
Image16 36.979 39.999 49.927 49.799
Image17 33.606 36.918 47.608 46.732
Image18 29.904 32.731 43.121 43.489
Image19 30.263 33.484 46.654 46.397
Image20 33.190 37.012 48.002 47.928
Image21 31.814 35.096 47.504 47.523
Image22 31.823 34.674 42.044 42.172
Image23 37.405 40.294 45.103 45.147
Image24 29.281 32.249 42.148 41.991

Average 32.397 35.527 44.567 44.748

Fig. 12. The twenty-four testing im
2.2. Theproposed edge sensing-based demosaicing algorithm for DTDI
mosaic images

In this section, the proposed edge sensing-based demosaic-
ing algorithm that is used to recover the missing R and B
color values of a DTDI mosaic image is presented. In what
follows, let the R, G, and B color values of the pixel located
at the position (i, j) of a demosaiced full color image, IDdm, be
denoted as Ir

Ddmði; jÞ; I
g
Ddmði; jÞ, and Ib

Ddmði; jÞ, respectively. Since
the proposed recovery method for R color values is the same
as that for B color values, we only present the case of R color
values.

For easy explanation, we use Fig. 5 to describe how the missing R
color values are estimated. The subimage shown in Fig. 5 indicates
that the missing R color value of the central pixel at position (i, j)
can be estimated from its six neighboring pixels with movement
W = {(i + a, j + b)ja 2 {0,±1},b 2 {±1}}. To estimate the R color value
more accurately, we assign six appropriate weights in terms of
2] L2W [12] MPT [18] MCEA [4] OURS

33.668 43.282 45.701 45.565
37.143 40.528 41.064 42.309
43.126 45.342 46.235 47.717
38.219 41.169 41.879 42.894
33.902 41.977 43.139 44.187
36.614 47.018 47.789 48.516
41.389 45.407 46.699 47.665
29.271 40.741 41.181 42.001
39.383 45.875 47.275 47.531
40.736 45.511 46.475 46.845
35.742 43.883 44.989 45.910
41.293 45.051 46.939 47.059
30.994 45.030 45.603 46.064
36.006 40.045 40.929 42.458
36.328 39.021 40.120 39.952
41.644 49.297 50.128 50.446
38.469 46.937 47.505 47.732
34.132 42.781 43.080 44.020
34.765 46.191 46.773 47.291
36.679 47.426 47.985 48.460
36.757 46.813 47.725 48.239
35.826 41.433 42.101 42.516
42.322 44.570 45.614 46.641
33.675 41.503 41.754 42.164

37.003 44.035 44.945 45.591

ages in Kodak PhotoCD [23].
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gradient information along the interpolation directions to the six
corresponding neighboring pixels. We first consider the neighboring
pixel located at position (i, j � 1). When the pixel lies on a vertical
edge, it indicates that the horizontal gradient magnitude,

DeDh
grði; j� 1Þ

��� ���, would be large. Based on the color difference

assumption [4,15,18], it reveals that this pixel makes less contribu-
tion to the estimation of the R color value of the central pixel; other-
wise, it reveals that this pixel makes more contribution to the
estimation of the R color value of the central pixel. Thus, we use
the reciprocal of the gradient magnitude to determine the appropri-

ate weight. Further, besides DeDh
grði; j� 1Þ

��� ���, another two horizontal
Table 2
PSNR quality comparison in B color plane for twenty-four test images in Kodak PhotoCD.

Image Algorithm

BI [12] WAI [12] MHA [12] MLP [1

Image01 28.409 31.245 47.615 47.775
Image02 34.793 37.155 49.939 49.597
Image03 37.691 40.324 47.215 48.183
Image04 34.827 37.915 50.072 49.834
Image05 28.078 31.187 44.341 45.716
Image06 31.614 34.493 45.528 45.644
Image07 35.411 39.113 48.604 50.089
Image08 24.171 27.271 43.369 43.538
Image09 34.130 36.797 48.786 49.015
Image10 34.219 37.327 46.178 46.258
Image11 31.312 34.310 49.510 49.894
Image12 35.011 38.653 47.985 48.138
Image13 26.140 28.787 42.449 42.569
Image14 31.744 34.512 45.798 47.567
Image15 31.521 35.876 46.298 46.598
Image16 36.627 39.456 49.666 49.959
Image17 32.692 35.546 46.398 46.239
Image18 29.339 31.928 43.524 44.222
Image19 30.213 33.128 48.980 49.157
Image20 32.751 35.907 44.934 44.734
Image21 31.641 34.604 45.721 46.351
Image22 31.268 33.836 46.166 47.270
Image23 37.168 39.896 49.258 49.413
Image24 28.143 30.828 38.745 38.959

Average 32.038 35.004 46.545 46.947

Table 3
CPSNR quality comparison for twenty-four test images in Kodak PhotoCD.

Image Algorithm

BI [12] WAI [12] MHA [12] MLP [1

Image01 30.490 33.469 47.007 47.155
Image02 36.187 38.331 45.165 45.474
Image03 39.533 42.522 48.452 49.145
Image04 36.536 39.156 45.611 46.258
Image05 29.995 33.321 45.192 45.994
Image06 33.594 36.552 48.231 48.409
Image07 37.262 41.035 48.884 49.663
Image08 26.065 29.252 43.818 43.965
Image09 36.030 38.975 49.300 49.272
Image10 36.358 39.701 47.929 48.034
Image11 33.078 36.052 47.982 48.560
Image12 37.302 40.846 48.335 48.435
Image13 28.087 30.863 45.438 45.596
Image14 33.329 36.223 44.205 45.448
Image15 33.615 37.420 43.242 43.440
Image16 38.560 41.480 51.556 51.639
Image17 34.886 37.939 48.722 48.239
Image18 31.373 34.072 45.079 45.601
Image19 31.999 35.063 49.424 49.322
Image20 34.726 38.185 47.963 47.805
Image21 33.487 36.604 48.282 48.659
Image22 33.298 35.996 45.394 45.773
Image23 39.046 41.852 48.462 48.537
Image24 30.436 33.241 41.882 41.976

Average 33.970 37.006 46.898 47.183
gradient magnitudes of the pixels at positions (i, j) and (i, j� 2) are
also considered to enhance the accuracy of the estimation. Accord-
ing to the above analysis on gradient information and direction ef-
fects, the weight of the pixel at position (i, j� 1) can be
determined by

wgrðh;i;j�1Þ¼ 1

1þ DeDh
grði;j�2Þ

��� ���þ2 DeDh
grði;j�1Þ

��� ���þ DeDh
grði;jÞ

��� ���h i ;
where 1 in the denominator is used to avoid division by zero. For
the same reason, the weights of the five other neighbors of the cen-
tral pixel can be respectively determined by
2] L2W [12] MPT [18] MCEA [4] OURS

32.299 48.055 47.562 48.296
38.280 50.855 49.909 51.034
41.619 46.903 45.717 47.667
39.416 50.612 50.301 51.236
32.591 44.048 43.821 45.042
35.698 45.279 45.795 46.123
41.251 49.122 47.866 49.764
28.592 43.179 42.975 43.443
38.046 49.012 47.611 49.337
38.859 46.067 45.949 46.640
35.600 50.157 50.029 50.908
40.030 48.378 47.727 48.740
30.111 42.388 42.456 42.775
35.809 45.951 44.546 46.622
36.550 46.731 45.806 46.676
40.840 50.114 50.046 51.138
36.766 46.991 46.542 47.079
33.189 44.052 43.644 44.175
34.206 49.041 48.818 50.101
31.344 45.086 44.549 45.222
36.002 45.567 45.451 46.432
35.118 46.364 45.916 47.050
42.286 50.107 48.269 49.370
32.512 38.971 39.075 39.129

36.126 46.793 46.266 47.250

2] L2W [12] MPT [18] MCEA [4] OURS

34.690 46.804 48.293 48.480
39.435 44.914 45.303 46.534
44.068 47.813 47.729 49.453
40.537 45.472 46.066 47.072
34.958 44.651 45.228 46.354
37.893 47.823 48.439 48.918
43.081 48.640 49.005 50.350
30.679 43.552 43.747 44.423
40.424 48.927 49.201 50.101
41.458 47.541 47.965 48.502
37.432 47.734 48.577 49.488
42.377 48.164 49.076 49.579
32.291 45.272 45.512 45.876
37.667 43.824 44.133 45.820
38.198 43.112 43.853 43.886
42.984 51.447 51.848 52.540
39.296 48.725 48.758 49.154
35.396 45.131 45.114 45.858
36.237 49.147 49.437 50.234
35.000 47.861 47.696 48.307
38.124 47.906 48.202 49.003
37.219 44.994 45.363 45.977
44.065 48.271 48.502 49.556
34.815 41.816 41.972 42.147

38.264 46.648 47.042 47.817
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Table 4
S-CIELAB DE�ab quality comparison for twenty-four test images in Kodak PhotoCD.

Image Algorithm

BI [12] WAI [12] MHA [12] MLP [1

Image01 3.0827 1.7939 0.4484 0.4331
Image02 2.0621 1.4768 0.6928 0.6884
Image03 1.0032 0.6347 0.3872 0.3578
Image04 1.6594 1.0964 0.5087 0.4889
Image05 3.9301 2.2525 0.7094 0.6239
Image06 1.7148 1.0122 0.3668 0.3434
Image07 1.3133 0.7942 0.4205 0.3796
Image08 4.0916 2.2944 0.5345 0.5157
Image09 1.2456 0.8050 0.3182 0.3158
Image10 1.2286 0.7519 0.3486 0.3434
Image11 2.3376 1.3949 0.4803 0.4474
Image12 0.8996 0.5628 0.2787 0.2672
Image13 4.7080 2.8729 0.6002 0.5272
Image14 2.4841 1.5260 0.5866 0.5259
Image15 1.9805 1.3147 0.6292 0.6115
Image16 1.2053 0.7304 0.3336 0.3146
Image17 2.0241 1.2672 0.5515 0.5409
Image18 3.5271 2.2854 0.8016 0.7215
Image19 2.3556 1.4776 0.4061 0.4082
Image20 1.5201 0.9746 0.3699 0.3549
Image21 1.9835 1.1863 0.3837 0.3644
Image22 2.0835 1.3878 0.5084 0.4710
Image23 1.0075 0.7419 0.4284 0.4294
Image24 2.5521 1.5048 0.5175 0.4862

Average 2.1667 1.3391 0.4838 0.4567

Table 5
Average PSNR quality comparison in R color plane for the images in each category of Core

Category Algorithm

BI [12] WAI [12] MHA [12] MLP

Abstract 32.433 35.474 50.120 50.96
Animals 33.444 36.931 47.947 48.94
Architecture 29.768 32.918 48.405 49.14
Backgrounds 27.008 30.089 47.814 48.66
Business 31.134 34.301 48.128 48.91
Design 31.015 34.405 47.281 47.93
Food_Drink 31.793 34.961 47.101 48.17
Home 27.837 30.839 47.630 48.48
Int_Arch 30.803 34.370 49.400 50.26
Landscape 29.294 32.117 50.987 52.06
Natural 31.087 34.267 47.918 48.84
Objects 31.565 34.637 46.785 47.67
Sunsets 35.921 39.120 47.241 48.44
Technology 32.498 35.871 47.331 48.11
Texture 27.827 31.050 47.454 48.29
Travel 30.110 33.132 49.142 50.10
Undersea 34.471 37.578 49.283 50.48
Water 30.790 33.766 50.844 51.80

Average 31.044 34.213 48.378 49.29
where dk = 2 if k = 1; dk = 1, otherwise. According to the above
description, the R color value of the central pixel, Ir

Ddmði; jÞ, can be
estimated by the following rules:

Ir
Ddmði; jÞ ¼ Ig

Ddmði; jÞ �
P
ðd;x;yÞ2nwðd; x; yÞDgrðx; yÞP

ðd;x;yÞ2nwðd; x; yÞ ;

where Dgrðx; yÞ ¼ Ig
Dmoðx; yÞ � Ir

Dmoðx; yÞ; n ¼ ðh; i; j � 1Þ; ðh; i; j þ 1Þ;f
�p
4 ; i � 1; j � 1
� �

; �p
4 ; i þ 1; j þ 1
� �

; p
4 ; i þ 1; j � 1
� �

; p
4 ; i � 1; j þ 1
� �

g,
and Ig

Ddmði; jÞ ¼ Ig
Dmoði; jÞ. For example, based on the input DTDI

Lighthouse image shown in Fig. 11(a), the resultant image after
recovering R color values is shown in Fig. 11(e).

Finally, we can estimate the missing B color values by the same
way, and then the demosaiced full color image can be obtained.
Fig. 11(f) illustrates the demosaiced full color Lighthouse image.
2] L2W [12] MPT [18] MCEA [4] OURS

1.9129 0.4515 0.4158 0.3735
1.4665 0.6579 0.6815 0.5832
0.6266 0.3880 0.3949 0.3273
1.0598 0.4941 0.4836 0.4233
2.3495 0.6879 0.6949 0.6025
1.0505 0.3722 0.3527 0.3149
0.7375 0.4153 0.4229 0.3575
2.4097 0.5503 0.5372 0.4865
0.8010 0.3238 0.3183 0.2821
0.7224 0.3518 0.3395 0.3052
1.4605 0.4596 0.4381 0.3897
0.5536 0.2754 0.2661 0.2331
3.0125 0.5753 0.5858 0.5252
1.5310 0.5733 0.5994 0.5007
1.3439 0.6233 0.5769 0.5398
0.7372 0.3337 0.3108 0.2737
1.2683 0.5128 0.5163 0.4580
2.2751 0.7647 0.8010 0.7017
1.5067 0.4013 0.4052 0.3594
1.4386 0.3541 0.3713 0.3302
1.2192 0.3863 0.3716 0.3310
1.3502 0.4966 0.5148 0.4462
0.6736 0.4136 0.4256 0.3761
1.5339 0.5186 0.5128 0.4671

1.3767 0.4742 0.4724 0.4162

lDRAW image database.

[12] L2W [12] MPT [18] MCEA [4] OURS

3 37.134 49.712 48.253 51.694
2 38.633 47.285 50.437 49.874
3 34.422 47.872 48.574 49.910
4 31.731 47.328 47.894 49.503
2 35.602 47.544 48.469 49.807
7 35.856 46.831 47.808 48.933
7 36.573 46.795 49.473 49.114
0 32.238 47.152 48.013 49.670
2 36.021 48.867 49.417 50.947
7 33.615 50.518 52.255 52.725
4 36.006 47.517 48.181 49.928
4 36.355 46.248 47.010 48.715
4 40.894 46.446 47.187 48.872
4 37.486 46.710 47.602 49.094
6 32.789 46.941 47.457 49.287
0 34.627 48.567 49.277 50.896
5 39.346 48.712 49.290 50.972
8 35.333 50.258 50.976 52.467

5 35.815 47.850 48.754 50.134



Table 6
Average PSNR quality comparison in B color plane for the images in each category of CorelDRAW image database.

Category Algorithm

BI [12] WAI [12] MHA [12] MLP [12] L2W [12] MPT [18] MCEA [4] OURS

Abstract 32.602 35.485 50.743 52.517 37.106 50.478 49.201 52.694
Animals 33.696 36.894 49.773 51.610 38.502 49.202 50.650 51.707
Architecture 29.874 32.974 49.806 51.764 34.449 49.265 49.245 51.567
Backgrounds 27.261 30.339 48.276 50.222 31.960 47.864 47.805 50.354
Business 31.250 34.384 50.014 51.556 35.743 49.432 49.521 51.700
Design 31.206 34.591 50.638 52.060 35.984 50.104 50.047 52.160
Food_Drink 32.021 35.034 49.074 51.245 36.537 48.687 48.544 51.340
Home 27.938 30.914 49.327 51.256 32.295 49.045 48.914 51.363
Int_Arch 30.809 34.305 49.237 51.544 36.072 48.730 48.649 51.520
Landscape 29.466 32.166 50.353 52.512 33.546 50.037 51.032 52.549
Natural 31.395 34.297 48.332 50.867 36.037 48.121 47.823 50.870
Objects 31.749 34.808 49.041 51.021 36.472 48.526 48.326 51.022
Sunsets 36.619 39.337 49.329 51.081 40.683 48.482 48.446 50.959
Technology 32.556 35.676 49.302 51.513 37.430 48.709 48.420 51.299
Texture 28.088 31.281 48.341 50.585 33.031 48.023 47.785 50.688
Travel 30.301 33.188 49.922 52.014 34.624 49.403 49.522 52.095
Undersea 34.815 37.812 50.732 52.880 39.714 50.246 50.219 52.929
Water 30.977 33.780 50.359 52.578 35.313 49.873 50.158 52.686

Average 31.257 34.292 49.589 51.601 35.861 49.124 49.128 51.639

Table 7
Average CPSNR quality comparison for the images in each category of CorelDRAW image database.

Category Algorithm

BI [12] WAI [12] MHA [12] MLP [12] L2W [12] MPT [18] MCEA [4] OURS

Abstract 34.276 37.238 52.027 53.426 38.876 51.685 50.246 53.769
Animals 35.322 38.659 50.304 51.654 40.309 49.643 52.151 52.212
Architecture 31.579 34.701 50.481 51.626 36.187 49.951 50.394 52.117
Backgrounds 28.889 31.968 49.304 50.878 33.599 48.863 49.166 51.188
Business 32.948 36.097 50.446 51.526 37.418 49.865 50.518 52.155
Design 32.868 36.256 50.224 51.122 37.677 49.737 50.416 51.797
Food_Drink 33.661 36.754 49.500 51.007 38.310 49.151 49.473 51.486
Home 29.647 32.634 49.640 51.232 34.021 49.314 49.844 51.773
Int_Arch 32.565 36.098 50.927 52.407 37.804 50.411 50.657 52.628
Landscape 31.139 33.902 52.225 53.842 35.340 51.845 52.255 54.217
Natural 32.992 36.028 49.453 51.082 37.769 49.156 49.385 51.704
Objects 33.410 36.465 49.194 50.412 38.151 48.632 49.070 51.131
Sunsets 38.008 40.967 49.753 51.261 42.521 48.938 49.403 51.374
Technology 34.284 37.482 49.651 50.958 39.178 49.017 49.427 51.475
Texture 29.713 32.916 49.060 50.440 34.652 48.645 48.811 51.133
Travel 31.963 34.916 51.024 52.383 36.378 50.470 50.913 52.871
Undersea 36.398 39.448 51.486 53.023 41.273 50.950 51.236 53.366
Water 32.641 35.528 52.114 53.824 37.078 51.573 52.043 54.021

Average 32.906 36.003 50.378 51.784 37.586 49.880 50.300 52.245

Table 8
Average S-CIELAB DE�ab quality comparison for the images in each category of CorelDRAW image database.

Category Algorithm

BI [12] WAI [12] MHA [12] MLP [12] L2W [12] MPT [18] MCEA [4] OURS

Abstract 2.4374 1.4728 0.4094 0.3279 1.5207 0.4267 0.4910 0.3098
Animals 2.3462 1.4760 0.5182 0.4073 1.5264 0.5395 0.3976 0.3874
Architecture 3.0709 1.8388 0.4462 0.3642 1.9489 0.4764 0.4369 0.3490
Backgrounds 5.0452 2.9344 0.6495 0.5255 3.1260 0.6785 0.6781 0.5131
Business 2.3937 1.4867 0.4270 0.3473 1.5614 0.4546 0.4143 0.3292
Design 2.2533 1.3651 0.4062 0.3409 1.4014 0.4314 0.3981 0.3210
Food_Drink 2.6322 1.6857 0.5906 0.4562 1.6702 0.6147 0.6005 0.4476
Home 4.2218 2.5020 0.4596 0.3705 2.7225 0.4812 0.4507 0.3488
Int_Arch 2.9773 1.7131 0.4364 0.3454 1.7431 0.4728 0.4466 0.3344
Landscape 3.4676 2.0625 0.3423 0.2697 2.2466 0.3612 0.3325 0.2561
Natural 3.3877 2.0874 0.5493 0.4311 2.1468 0.5697 0.5555 0.4093
Objects 2.6064 1.6417 0.5446 0.4347 1.6542 0.5821 0.5491 0.4133
Sunsets 1.7976 1.2713 0.6381 0.4993 1.2423 0.6774 0.6133 0.4990
Technology 2.3532 1.4960 0.5570 0.4463 1.5426 0.5859 0.5398 0.4210
Texture 4.4700 2.6351 0.5584 0.4382 2.7876 0.5887 0.5870 0.4179
Travel 3.0628 1.8585 0.3892 0.3115 1.9882 0.4185 0.3831 0.2982
Undersea 1.7289 1.0714 0.3793 0.2939 1.0665 0.4083 0.3828 0.2868
Water 3.1118 1.8542 0.3862 0.3028 1.9864 0.4119 0.3825 0.2908

Average 2.9647 1.8029 0.4826 0.3840 1.8823 0.5100 0.4800 0.3685
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Fig. 13. Magnified subimages cut from the testing image No. 08 in Kodak PhotoCD.
(a) Original full color image and the demosaiced images generated by (b) BI
algorithm, (c) WAI algorithm, (d) MHA algorithm, (e) MLP algorithm, (f) L2W
algorithm, (g) MPT algorithm, (h) MCEA algorithm, and (i) the proposed algorithm.
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3. Experimental results

To test the quality performance of the proposed demosaicing
algorithm, we used two test image sets to conduct experiments.
The first set included twenty-four test images in Kodak PhotoCD
[23]. The twenty-four test images are shown in Fig. 12 and they
have been widely used for evaluating demosaicing algorithms.
The other set was CorelDRAW image database [24] consisting of
eighteen categories of images. Since CorelDRAW image database
comprised one thousand, three hundred, and fifty-six test images,
it could be used to demonstrate the general applicability of the
concerned demosaicing algorithms. These test images were first
down-sampled to obtain DTDI mosaic images. Then, we ran five
existing demosaicing algorithms in [12], modified Pei and Tam’s
algorithm (MPT algorithm), modified Chung et al.’s algorithm
(MCEA algorithm) and the proposed algorithm on the above men-
tioned DTDI mosaic images. The five existing demosaicing algo-
rithms in [12] were bilinear interpolation algorithm (BI
algorithm), modified Laroche and Prescott’s algorithm (MLP algo-
rithm), modified Hamilton and Adams’s algorithm (MHA algo-
rithm), weighted absolute interpolation algorithm (WAI
algorithm), and least squares approximation based on WAI algo-
rithm (L2W algorithm). Further, MPT algorithm was similar to
the R/B color interpolation process of original Pei and Tam’s
algorithm. The only difference was that six neighboring pixels
corresponding to interpolation directions were taken into account
in the interpolation process. MCEA algorithm, which was similar to
the R/B color interpolation process of original Chung et al.’s
algorithm, could be developed by modifying the luminance
operator of the SL-based marks slightly to deal with DTDI mosaic
pattern. The size of each test image in the two sets was
512 � 768. All algorithms adopted in the experiments were imple-
mented on the IBM compatible computer with Intel Core i5 CPU
2.53 GHz and 3 GB RAM. The operating system used was MS-Win-
dows XP and the program developing environment was Borland
C++ Builder 6.0. Furthermore, all the experimental results are
available in [25].

To compare the quality performance among the eight demosa-
icing algorithms, we used three objective measures, i.e., PSNR,
CPSNR, and S-CIELAB DE�ab metric [13,15], and one subjective image
quality measure, i.e., color artifacts, to test the applicability and the
quality of outcome for each algorithm. The PSNR of a demosaiced
color plane with size M � N is defined as

PSNR ¼ 10log10
2552

1
MN

PM�1
i¼0

PN�1
j¼0 Ic

oriði; jÞ � Ic
Ddmði; jÞ

� �2 ;

where c can be r or b; Ir
oriði; jÞ and Ir

Ddmði; jÞ, respectively, denote the R
color components of the pixels at location (i, j) in an original full col-

or image and a demosaiced image; Ib
oriði; jÞ and Ib

Ddmði; jÞ, respectively,
denote the B color components of the pixels at location (i, j) in an
original full color image and a demosaiced image. The lager the
PSNR, the better will be the image quality. The CPSNR of a demosa-
iced image with size M � N is defined as

CPSNR ¼ 10log10
2552

1
3MN

PM�1
i¼0

PN�1
j¼0

P
c2C Ic

oriði; jÞ � Ic
Ddmði; jÞ

� �2 ;

where C = {r,g,b}; Ir
oriði; jÞ; I

g
oriði; jÞ, and Ib

oriði; jÞ denote the three color
components of the pixel at location (i, j) in an original full color

image; Ir
Ddmði; jÞ; I

g
Ddmði; jÞ, and Ib

Ddmði; jÞ denote the three color
components of the pixel at location (i, j) in a demosaiced image.
The lager the CPSNR, the better will be the image quality. The
S-CIELAB DE�ab of a demosaiced color image with size M � N is
defined by
DE�ab ¼
1

MN

XM�1

i¼0

XN�1

j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
c2W

LABc
oriði; jÞ � LABc

Ddmði; jÞ
� �2

s8<:
9=;; ð4Þ

where W = {L,a,b}; LABL
oriði; jÞ; LABa

oriði; jÞ, and LABb
oriði; jÞ denote the

three CIELAB color components of the pixel at location (i, j) in an ori-

ginal full color image; LABL
Ddmði; jÞ; LABa

Ddmði; jÞ, and LABb
Ddmði; jÞ denote

the three CIELAB color components of the pixel at location (i, j) in a
demosaiced image. The smaller the S-CIELAB DE�ab, the better will be
the image quality. The transformation from RGB color space to CIE-
LAB color space can be found in [13].

Based on the twenty-four test images in Kodak PhotoCD, i.e.,
the first image set, we ran the concerned eight demosaicing
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algorithms. Tables 1 and 2 demonstrate the PSNR quality compar-
ison for the demosaiced R and B color planes, respectively. Tables 3
and 4 show the demosaiced image quality comparison in terms of
CPSNR and S-CIELAB DE�ab, respectively. In Tables 1–4, the entries
with the largest PSNR and CPSNR are highlighted by boldface;
the ones with the smallest S-CIELAB DE�ab are highlighted by bold-
face, too. From the tables, it indicates that on average, the proposed
demosaicing algorithm has the best demosaiced image quality in
terms of PSNR, CPSNR, and S-CIELAB DE�ab. Then, we took the test
images in CorelDRAW image database, i.e., the second image set,
to compare the image quality performance. Based on the eighteen
image categories in CorelDRAW image database, Tables 5 and 6
show the average PSNR quality comparison for the demosaiced R
and B color planes, respectively, and the demosaiced image quality
comparison in terms of CPSNR and S-CIELAB DE�ab are demon-
strated in Tables 7 and 8, respectively. In Tables 5–8, we also high-
light the entries with the best image quality performance by
boldface. Tables 5–8 reveal that on average, the proposed demosa-
icing algorithm has the best image quality performance in terms of
PSNR, CPSNR, and S-CIELAB DE�ab.

Next, we used the subjective measure to demonstrate the visual
quality advantage of the proposed demosaicing algorithm. After
demosaicing DTDI mosaic images, some degree of color artifacts
may appear on nonsmooth regions of the demosaiced images.
We first took the magnified subimages cut from image No. 08 in
Kodak PhotoCD to compare the visual effect. Fig. 13(a)–(i) illustrate
the nine magnified subimages cut from the original test image and
the ones generated by the concerned demosaicing algorithms.
Comparing the visual effect between the original magnified subimage
Fig. 14. Magnified subimages cut from the testing image No. 19 Kodak PhotoCD. (a) Ori
WAI algorithm, (d) MHA algorithm, (e) MLP algorithm, (f) L2W algorithm, (g) MPT algo
shown in Fig. 13(a) and the ones in Fig. 13(b)–(i), it is obvious
that MLP algorithm, MHA algorithm, MPT algorithm, MCEA algo-
rithm, and the proposed demosaicing algorithm have the same vi-
sual effect and produce less color artifacts than the three other
demosaicing algorithms. We subsequently took the magnified sub-
images cut from image No. 19 in Kodak PhotoCD to depict the vi-
sual comparison. Fig. 14(a)–(i) illustrate the magnified subimages
cut from the original test image and the demosaiced images gener-
ated by the concerned eight demosaicing algorithms. By visual
comparison, it is observed that MLP algorithm, MHA algorithm,
MPT algorithm, MCEA algorithm, and the proposed demosaicing
algorithm have the same visual benefit and better visual effect
when compared with the three other demosaicing algorithms.
Then, we used magnified subimages cut from the test images in
CorelDRAW image database to demonstrate the visual effect com-
parison. Based on the subimages cut from the testing image No.
127 in the Water category and the testing image No. 12 in the Ani-
mal category, Figs. 15 and 16, respectively, show the visual effect
comparison among the concerned demosaicing algorithms. From
the two figures, it is clear that less color artifacts exist in the demo-
saiced images produced by MLP algorithm, MHA algorithm, MPT
algorithm, MCEA algorithm, and the proposed demosaicing algo-
rithm. Although MLP algorithm, MHA algorithm, MPT algorithm,
MCEA algorithm, and the proposed demosaicing algorithm have
the same visual effect, Tables 1–8 indicate that the proposed
algorithm has the best image quality in terms of PSNR, CPSNR
and S-CIELAB DE�ab.

Finally, based on all the test images, Table 9 shows the overall
performance comparison in terms of average PSNR, average CPSNR,
ginal full color image and the demosaiced images generated by (b) BI algorithm, (c)
rithm, (h) MCEA algorithm, and (i) the proposed algorithm.
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average S-CIELAB DE�ab, average execution-time, and memory
requirement between the proposed demosaicing algorithm and
the other seven compared algorithms. We measured the memory
requirement comparison in terms of the maximum amount of vari-
ables required for demosaicing the missing R or B color component
in a pixel. The number of required variables were counted for the
two different formats, i.e., integer and floating point. For example,
twenty-three integer variables and eight floating point variables
are required to demosaic the missing R or B color component in
a pixel in our proposed algorithm. In Table 9, the variable ‘‘W’’
Fig. 15. Magnified subimages cut from the testing image No. 127 in the Water
category of CorelDRAW image database. (a) Original full color image and the
demosaiced images generated by (b) BI algorithm, (c) WAI algorithm, (d) MHA
algorithm, (e) MLP algorithm, (f) L2W algorithm, (g) MPT algorithm, (h) MCEA
algorithm, and (i) the proposed algorithm.
denotes the number of sampling pixels in the training set of the
least squares approximation. From the table, it is observed that
the average execution-time and memory requirement of the pro-
posed demosaicing algorithm is moderate when compared with
the other seven algorithms. However, the proposed algorithm has
the best demosaiced image quality performance in terms of aver-
age PSNR, average CPSNR and average S-CIELAB DE�ab among the
concerned demosaicing algorithms.

4. Conclusions

In this paper, a novel edge sensing-based demosaicing algo-
rithm for DTDI mosaic images has been presented. In the pro-
posed algorithm, the SI-based masks are first used to extract
more accurate gradient information in the color difference do-
main. Based on the extracted more accurate gradient information,
the proposed edge sensing-based demosaicing algorithm can gen-
erate good quality of a demosaiced image. By experimenting on
Fig. 16. Magnified subimages cut from the testing image No. 12 in the Animal
category of CorelDRAW image database. (a) Original full color image and the
demosaiced images generated by (b) BI algorithm, (c) WAI algorithm, (d) MHA
algorithm, (e) MLP algorithm, (f) L2W algorithm, (g) MPT algorithm, (h) MCEA
algorithm, and (i) the proposed algorithm.



Table 9
The overall performance comparison of the eight concerned demosaicing algorithms for the test DTDI mosaic images in the two sets.

Algorithm

BI [12] WAI [12] MHA [12] MLP [12] L2W [12] MPT [18] MCEA [4] OURS

PSNR for R plane 31.721 34.870 46.473 47.022 36.409 45.942 46.850 47.862
PSNR for B plane 31.647 34.648 48.067 49.274 35.993 47.958 47.697 49.445
CPSNR 33.438 36.505 48.638 49.483 37.925 48.264 48.671 50.031
S-CIELAB DE�ab 2.5657 1.5710 0.4832 0.4204 1.6295 0.4921 0.4762 0.3923
Execution-time (s) 0.014 0.032 0.141 0.016 3.276 0.125 0.506 0.320

Memory requirement
Integer 2 8 17 5 8 12 36 23
Floating point 0 0 0 0 39 + 2 W 0 13 8
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more than one thousand and three hundred test DTDI mosaic
images, the results demonstrate that the proposed demosaicing
algorithm has better demosaiced image quality when compared
with five existing demosaicing algorithms in [12], MPT algorithm,
and MCEA algorithm. Because the proposed demosaicing algo-
rithm can generate demosaiced image with better quality, it is
an interesting research topic to apply the results of this paper
to the field of depth estimation in the panorama [17,22].
Appendix A. The derivation of the SI-based masks

Combining Eqs. (2) and (3), the six SI-based masks used to ex-
tract gradient information in the color difference domain directly
can be obtained by the following derivation: for the pixels at posi-
tion (i, j) 2Xgr, it yields
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For the pixels at position (i, j) R Xgr, it yields
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