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Space-Filling Approach for Fast Window Query on
Compressed Images

Kuo-Liang Chung, Yao-Hong Tsai, and Fei-Ching Hu

Abstract—Based on the space-filling approach, this paper Hilbert scan were developed [14], [16], [17]. For convenience,
presents a fast algorithm for window query on compressed images. g gray image compressed by using Hilbert scan is simply called
Given a query window of sizeén, X n, the proposed algorithm - hressed image throughout this paper. Window query [2],
takesO(n,; log T' 4 P) time to perform the window query, where 201 12311 . . L datab
mi = max(ng, ng) and T x T is the image size;P is the [ : ], [23]is an important query operations in image databases.
number of outputted codes. The proposed algorithm improves the Given a compressed image, in this research, the window
naive algorithm, which needsO(n;n, log T' + P) time, signifi- query wants to report the corresponding compressed subimage

cantly. Some experimentations are carried out to demonstrate the without the need to decompress the compressed image. After

computational advantage of the proposed algorithm. From the g qecompressing takes a lot of time and a window query does
experimental results, it is observed that the proposed algorithm ’ .
not need refer to the full image.

has about 72—-98% time improvement when compared to the naive ] - »
algorithm. Employing the maximal blocks partition strategy [3], [29],

Index Terms—Compressed images, Hilbert scan, image data- SOMe propertie§ of Hilbert order, and the rela'ted fast mgpping
base, maximal quadtree blocks, space-filling curve, window query. formula [19], this paper presents a fast algorithm for window
query on compressed images. Given a query window of size
n1 X na, the proposed algorithm také¥(n,logT + P) time
to perform the window query, whemg = max(n;, ns) and

HE ORIGINAL problem of space-filling curves was found? x 1’ is the image sizef’ is the number of outputted codes. The

by Cantor [7] that the intervdd, 1], can be mapped bijec- proposed algorithm improves the naive algorithm, which needs
tively onto the squarg0, 1]2. Peano [24] settled this problemO(nin,logT + P) time. Some experimentations are carried
by constructing a curve that passes through every entry obat to demonstrate the computational advantage of the proposed
two-dimensional region. Curves with this property are callealgorithm. From the experimental results, it is observed that the
space-filling curves or Peano curves. Afterwards, many variamoposed algorithm has about 72% to 98% time improvement
of space-filling curves were invented by Hilbert [12], Moorevhen compared to the naive algorithm.
[21], Lebesgue [18], and so on. The detailed descriptions are reThe rest of the paper is organized as follows. In Section Il, the
ferred to see the book [27]. Applications of space-filling curvedefinition of the Hilbert curve and the mapping (encoding) for-
are studied in the area of image analysis , [15], [28], image comula from thez- andy-coordinates to the Hilbert order are de-
pression [16], [17], [25], image encryption [6], [8], vector mescribed. In Section Ill, we describe the method for compressing
dian filtering [26], ordered dither [30], database access analygisly images based on the Hilbert scan. Section IV presents the
[4], [13], bandwidth reduction [5], and so on [27]. algorithm for generating maximal blocks for the given window.

Hilbert was the first who made this phenomenon dbection V presents the proposed algorithm for window query
space-filling curves luminous to the geometric imaginatio®n compressed images. Some experimental results are demon-
Thus, among these space-filling curves, Hilbert curve [12] &rated in Section VI. Finally, Section VIl addresses some con-
the most well-known. One important feature of Hilbert curve islusions.
that it scans the neighboring entry in the image continuously.
Then, the scanning order of Hilbert curve, named Hilbert scan,
preserves the proximity property of the original image. Liu and
Schrack [19], [20] presented an efficient algorithm to encode consider &' x 7" gray image represented as an array in the
and decode the Hilbert order from two-dimensional (2-D) argbmain Gyl0 <2 <T-1,0<y < T — 1}, where
three-dimensional (3-D) region into a one-dimensional (1-D) andy are integers. A Hilbert curve [12] can be obtained by
curve containing the image of the corresponding region and vigging a recursive procedure which passes through all the entries
versa. Recently, some image compression methods basedrofhe given image space. For example, the Hilbert curves of

resolutionr = 1, 2, and3 are shown in Fig. 1, wher& = T.
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| M a 3-D curve, which is called the Hilbert scanned curve of gray
| levels (HSCG). In most cases, the difference of gray levels be-
tween two neighboring pixels in the image space is bounded by

0 some small value. Due to the proximity property, the constructed
vt 5 Il HSCG can be partitioned into some segments by using the in-

T (a)r=1. (b) r=2. terpolation method.

For each segment, the beginning point, ending point, and their
gray levels form a code, which is used to represent the segment.
In practice, the memory required in one segment is less than that
— required for representing those gray levels. Thus, if the orig-
— inal gray image is represented by a set of codes, which denote
the generated segments, it achieves the compression effect. Ka-
] mataet al.[17] presented an efficient algorithm for compressing
gray images using the Hilbert scan and the zero-order interpo-
lation. Jian [14] presented a method using first-order interpo-
lation, which is based on the technique of polygon approxima-
(c)r=3. tion [1], [10] on the HSCG. Since the first-order interpolation
method has a better fitting effect to the original gray image than
that in the zero-order interpolation method, we thus adopt the
) ) ) ~ former method in this paper.
corresponding Hilbert orders of the entrié€s () and (, 1) in The segmentation process in the first-order interpolation
Fig. 1(a) are 1 and 2, respectively. _ method is first to divide the generated HSCG into some par-

Using the encoding formula developed by Liu and Schragfions, each partition with lengtti. Since the total length of
[19], each entry £, ) in the image space can be transformefiscg is7 x T, there areV = (T x T'/L) partitions. Thejth
into the corresponding Hilbert ordérefficiently. We have as- partition of HSCG forl < j < N is denoted byz; (i), where
sumed that the image size is 8fx 7. Let2" = T and let ; _ 1 9 ... [ without loss of generality, we only focus on
z andy be represented by = (z,—1---z120)2 @y = {hejth partition and for simplicityz; (i) is represented by(i).
(Ur—1--1go)2, i€ 0 = 300~ 2z andy = 355 2w, Ag shown in Fig. 2(a), leg(i) = x(1) + (x(L) — z(1)/L —
wherew;, y; € {0, 1}. The Hilbert order can be represented;y, (; 1) pe the first-order approximation of). The division
byglquaternary digit string = (h,,_l...hlho){k, ie.h = point N1 = {p|1 < p < L, |z(p) — y(p)| is maximunt in
2.0 4'hi, whereh; € {0, 1, 2, 3}. Letthe two bits of a qua- {he segment is used to dividgs) into two smaller segments
ternary digity, in h be represented by, ., andh,.. The en- \yhich will approximater(i) better. The two divided segments
coding formula is listed as follows: are represented by (4) = #(1) + (2(N1) — z(1)/N1 — 1) x
) (-1 andi(i) = e(N1+ 1) + (2(L) - 2(N1+1)/L -

i N1 — 1) x (¢ — 1). Then, the conditionrD < T* is tested,
hax =21 ® yi @) whereD = max{|z(i) — y;(¢)| for j = 1 or 2} andT™ is
the specified threshold. 1D > 7, the refinement process is
repeated; otherwise it is stopped.

Fig. 2 shows the first two steps of the division (refinement)
v1,p—1 =0 (3) process of the approximation method. Fig. 2(a) shows the first
Vo =0 (4) division process to generage(:) andy.(¢). In Fig. 2(b),N2is

0,r—1 . A N , .
_ _ the new division point ang ; (¢) andy, 2 (i) are the new refined
v, -1 =, (7 @ yy) + (T, ®yi)(vo,; @) (D) segments for representingi) at the left of the division point
vo,j—1 ="o, ;(v1,; B T;) + o, j(v1,; DY) 6 N1
) When D < T*, the approximated polygon lines, i.e., the
wherej = r —1,---,2, 1. Based on the above formUIas’generated segments, will be quite similar in shape to the original
(1)-(6). %lveg_ltge:— an((jly-coordl;na(tjes_of one P'Xil 'gﬂ;e fmageHSCG because each division point is determined to be the point
;Enaece,t € Hilbert order can be derived(r) = O(logT) in the original HSCG with the highest curvature. We have known
' : . . that there aréV partitions. Suppose there ah&* segments in
:?eturn to Fig. 1(a). Fordthe pixel al,(O),. the )coordmate one partition, then the compressed output of the corresponding
\rl]z\l/":s arez:_T) ;jgdj 1 aﬂ (?)Jt:/ EJ:?) an.(i;nclf;olzv:s’ \t,\r/s;\t subimage with respect to that partition is a sequence of codes
1,0 = 0,0 = . . . p * .
It = 1(081)+0(0@1) = 1andhy — 160 = 1 by (1) and (2), dEe”Oted byBj, Ej, Gp, G)forl < j < N*, wherel; and
) ) . ) ; are the beginning point and ending point of jitle segment;
respectively. The corresponding Hilbert ordekis- (11)2 = 3. G andGy; are the gray levels aB; and E;, respectively. In
fact, B; and £;,_, (&£; and B;4,) are the same points in the
HSCG. Thus, only the beginning point (or ending point) and its

If a gray image of sizd” x T is scanned along the Hilbertgray level are sufficient to represent one code. As a result, the

curve, the generated gray levels of the pixels in the image fomemory required in the outputted codes can be reduced to a half.
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Fig. 1. Hilbert curves for resolution = 1, 2, and 3.

Ropq1 =70, k(v1, x B z1) + vo, k(v1,x B Ty)

wherek =0, 1, ---, r— 1 andwg  andv; ; can be derived by
the following iterative formula:

Il. 1 MAGE COMPRESSION USINGHILBERT SCAN
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Fig. 3. Query window of siz8 x 8 on the image of siz&* x 2%.

paper, we outline how their algorithm works. The winddiv=
w(l, 6, 9, 8) and the queried image shown in Fig. 3 are used to
explain their algorithm.

The technique of their algorithm is repeatedly splitting a strip
of maximal blocks from the four sides of the query window.
Initially, the blocks of sizel x 1 are generated and the vari-
ablek is set to 1. Parameters v, n1, andns, are thex-coor-
dinate,y-coordinate, height, and width of the window, respec-
tively. Since gmod2*) = (1mod2) # 0, nine maximal blocks
(b) The second division. MB(1, ¢, 1)for6 < ¢ < 14 are generated and the wind®Wis
split by moving out a vertical strip of siZex 1 from the left side
of the window. The remaining window becomes§2, 6, 9, 7).
Next, since ¢mod2* = (6mod2) = 0, we do nothing. Since
IV. MAXIMAL QUADTREE BLOCKS (z 4+ namod2*) = (2 + 7Tmod2) # 0, nine maximal blocks

. . . MB(2+7-1,4,1)for6 < ¢ < 14 are generated and the
To speed up the window query in a quadtree-based image . . . g X
L maining window becomes(2, 6, 9, 6). Similarly, six max-

database, a well-known strategy is first to decompose eac : )
i . . . imal blocks M B(4,6 +9 — 1, 1) for 2 < ¢ < 7 are gener-
window into a set of square subwindows according to th . k -
" ated sincey + nimod2” = (6 4+ 9mod2) # 0. The remaining
quadtree decomposition [2], [22], [23]. These square subwin- : .
. . indow is denoted bw/(2, 6, 8, 6). After performing the above
dows are named maximal quadtree blocks, maximal blocks for

o . . our stepsk is increased by one, i.ek,= 2 and the same steps
simplicity. For a query window, the- and y-coordinates of : : :
its lower-left corner is used to denote the window’s Iocatior‘?‘re repeated uni the window becomes null. The gther maximal
o ; . : blocks can be obtained by the same arguments.
which is called starting point of the window. Thus, a query
window is denoted by (z, y, n1, n2), wheren, is the height
andn. is the width of the window. For example, the window
W=w(1, 6, 9, 8) in Fig. 3 is considered, which is highlighted
by four thick lines on its boundary. There are 33 maximal After describing some related techniques mentioned in Sec-
blocks in W and 24 maximal blocks are of width 1; eighttions II-IV, this section presents a novel approach using the pre-
maximal blocks are of width 2, e.g8; andB-; one is of width vious techniques as primitives for window query on compressed
4,i.e.,B3;. Each maximal block is a square block and is denoteéchages.

by MB(x, vy, s), where {, y) is the - and y-coordinates  Suppose the Hilbert orders have been determined in the image
of its lower-left corner ands is the width of the maximal space and the given window has been partitioned into a set of
block. Therefore, these 33 maximal blocks are denoted maximal blocks. First, the following observation is given.
MB(1,6,1), MB(1,7,1), ---,andM B(4, 8, 4)=Bs. Observation 1:For each maximal block, the associated

Given an arbitrary rectangular window of size x ny, Aref  Hilbert orders form a strictly increasing sequence.

and Samet [3] presented éNn; loglog T)-time algorithm for Since the number of entries in the window s x no,
decomposing the query window into a set of maximal blockesing the naive approach, the window query task can be
wheren; = max(n1, n2) andT x T is the size of the queried done by querying each entry in the compressed image. For
image. In addition, Dyer [11] showed that the number of geeach entry, it takes)(log7") query time. For the window,
erated maximal blocks i©(n;) in the worse case. Recently, ant takes O(ninslogT) query time. Applying the sorting
optimal algorithm was presented by Tsaial. [29] for finding algorithm [9] according to their Hilbert orders, these queried
the maximal blocks inO(n,;)-time. For completeness of thiscodes are sorted in an increasing sequence and it takes

Fig. 2. First two steps of first-order interpolation.

V. PROPOSEDALGORITHM FOR WINDOW QUERY ON
COMPRESSEDIMAGES
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Fig. 4. Hilbert curve map for Fig. 3. L4+ r-—J L—l L 142 | |'-—-J I——] L
B I Y i il
» =
O(ninslog(nins)) = O(ninelogT) sinceny, no < T. g 6 157 |
Then these sorted codes are merged into a smaller set of cor 1 2 “!’ “14 2 | 1% | 1=
Totally, the naive algorithm take@(n,nzlogT + P) time to tJe LT L 40'___| 2 - LI I L
perform the window query, wher® is the number of final 6 - T ]
outputted codes. 5 _J'_—]L _1[ _} [ ] Jr——]l_
Looking Fig. 4, the following observation is very important , | ] — ] —
to improve the naive algorithm. s LML [ Bl | anllsn
Observation 2: For each maximal block, suppose theand L 1] [__l L.j L] L]
y-coordinates of its lower-left corner has been known and t 2 ] ] N ] ] ]
corresponding Hilbert order has been calculated. If the orie 1 __]_, r Ir_|l _} L'_ If__l —} [
tation of the maximal block can be determined, then the mii ¢ 0”1 L

imal Hilbert order and the maximal Hilbertorderinthemaxima ¢ 1 2 3 4 5 ¢ 7 8 9 10 11 12 13 14 15
block can be determined.

Following Observation 2, in what follows, we present an ef- Fig. 5. Hilbert orders map for Fig. 4.
ficient method to determine the minimal Hilbert order and the
maximal Hilbert order in one maximal block. h, = (1322), = 122. Since the block is of siz8? x 22, v =

Given a maximal block! B(z, y, s), the Hilbertordeh, of = 2xv, 4wy 1 = 2x0+1 = 1 which denotes that the orientation
the entry ¢, y) can be obtained by the formulas from (1)—(6)ef the corresponding maximal block is to the right. From Table I,
The orientatiorv of the Hilbert curve with respect to the begine have that the minimal Hilbert order in the maximal block is
ning point and ending point in the maximal block can be ol = h, — (4 x 4 — 1) = 112 and the maximal Hilbert order is
tained at the same time whéyp is computed. There are totally,, = 5, + E}ZO 2l w2l = 1927,
four types of orientations for the Hilbert curve, say= 0 de-  After presenting how to determining the minimal and max-
noting the direction to the bottona;= 1 denoting the direction jmal Hilbert orders in one maximal block usiiglog 7') time,
to the right;v = 2 denoting the direction to the top;= 3 de- the proposed formal algorithm consisting of five steps is listed
noting the direction to the left. Let = 2v; ;1 + vo ;1 be pelow.
the orientation of & x 27 block. For the first typey = 0, the  Algorithm: Window Query: Input: An7n x no query window
beginning point is at the lower-left corner of the maximal blocki” and the compressed imagevith N* codes.
and the corresponding Hilbert ordgy is alsoh,; the ending Output: The corresponding codesli.
point is at the lower-right corner of the maximal block and the Step 1—(Generating Maximal BlocksfFor the query
corresponding Hilbert order, is h, 4 (s x s — 1). window W, the set of maximal blocks, sayf, corresponding

Consequently, according to Table I, the minimal Hilbert ordeo 17 is generated by using the linear-time algorithm proposed
hy and the maximal Hilbert orddr, in one maximal block can by Tsaiet al. [5]. Note that forWv, there areO(n;) maximal
be determined usin@(logT) time. blocks in the worst case [11].

As an example, Fig. 5 is given to demonstrate how Table | Step 2—(Computing the Related Hilbert Order§)or each
works. Consider the maximal blodW B(4, 8, 4). For the entry maximal block, we compute the minimal and maximal Hilbert
(4, 8), the coordinate values are= (0100), andy = (1000):. orders using Table | and it can be don&ilog T’) time. For a
By (3)and (4)w1,3 = 0 andyg 3 = 0. Thenw, 2 = 0(06 1)+ 1 x 1 maximal block,the minimal and maximal Hilbert orders
(1#1)(00)=0andvy o =004 1)+ 1(040) =0by (5) are set to be the same. Since for the window, there are at most
and (6). Similarly, we have; 1 = 0, v9,1 = 1, v1.0 = 0, O(n;) maximal blocks, this step také¥n; log T') time to deter-
andvg o = 1. By (1) and (2), the Hilbert order of4( 8) is mine the related Hilbert orders for the@én,;) maximal blocks.
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TABLE I
SIMULATION FOR SORTING AND MERGING

Maximal | (1,6,1), (1,7,1), ., (1,14,1); (8,6,1), (8,7,1); -, (8,14,1); (2,14,1), (3,14,1), ..., (7,14,1);

Blocks | (2,6,2), (2,8,2), ..., (2,12,2); (4,6,2), (6,6,2); (4,12,2), (6,12,2); (4,8,4)

Hilbert | (61), (62), (67), (66), (77), (76), (81), (82), (87); (214), (213), (128), (129), (142), (143),

orders | (144), (147), (148); (88), (91), (100), (103), (104), (107); (48,51), (68,71), (72,75),
(
(

92,95); (44,47), (40,43); (96,99), (108,111); (112,127)

40,43), (44,47), (48,51), (61), (62), (66), (67), (68,71), (72,75), (76), (77), (81), (82), (87),
(88), (91), (92,95), (96,99), (100), (103), (104), (107), (108,111), (112,127), (128), (129),
(142), (143), (144), (147), (148), (213), (214)

Merging | (40,51),(61,62),(66,77), (81,82),(87,83),(91,100),(103,104),(107,129),(142,144),(147, 148)
(213,214)

Sorting

Then, these calculated Hilbert orders form a sequéhddp to
here, the generated maximal blocksithare transferred to the |
sequences.

Step 3: (Sorting): Since the total maximal blocks il are
not obtained as the orders of the Hilbert scan, the sequ&nc
needs to be sorted to be an increasing sequence. In this step
quick-sort algorithm is used and it tak€$n; log n;) time. The
sorted sequence is denoted £V

Step 4: (Merging): If the difference of the Hilbert orders of
the beginning point of the current block and the ending point:
the previous block is exactly one, the two consecutive Hilbe
subcurves in the two blocks can be merged to be one largercu :
in order to reduce the number of Hilbert orders used. Only tl} [ { " i
Hilbert orders of the beginning point of the first block and th §§ ¢ Y
ending point of the last block are needed to represent the n | "= s
merged block if some blocks can be merged. We thus mer g
the sequencé™ and obtain the merged sorted-sequefice, . ;
Since the sequencE* needs to be traversed only once, this ste fo#
takesO(n;) time. The size 05,,.,, is bounded byD(n;). 4

Step 5: (Querying):For each pair of Hilbert orders in "
Snew, WE NOw want to find the corresponding codes in th .
compressed imagé. Consider the first pair inS, .., say &
B* and £* for B* < FE*. Using B* as the first key, the
binary search [9] is used to find the Hilbert code insay
(By, Ej;, Gp,;, Gg,), at which the conditio3; < Bx < E; Fig. 6. Four gray images.
holds. If B* is not equal toB;, the code is split into

(Bj, B*, Gg,;, Gp+) and B, Ej, Gp-, G,),  Where  mayimal blocks are shown in the first row in Table II. In Step

Gp = Gp, + (Gp, — Gp,/E; — By) x (B" - BJ'_)' 2, we compute the minimal and maximal Hilbert orders for each
Similarly, using E* as the second key, the binaryyayimal plock. These pairs of Hilbert orders are shown in the
search is used again to find the Hilbert code in say gecong row in Table 1. Then, they are sorted in an increasing
(Br, Ex, Gp,, Gg,), at which the conditioB, < E* < Ex  grger by Step 3. The sorted results are shown in the third row
holds. If E* is not equal t0E;, the code is split into i, Tapie 1. By Step 4, 33 ordered pairs of Hilbert orders are

(Br, £%, Gp,, Gp-) and €7, Ey, G-, Gg,), Where  aqed jnto 11 pairs and they are shown in the last row in
Gp- = Gp, +(Gg, — G, /Ex — By) X (E* — By). Then, Table Il. Thus, we can reduce the number of accessing times

we output the codes betwedT to £*. Since there are at moSttq the window query and achieve the goal of speeding up the
T? segments an®(n;) maximal blocks, this step totally takesindow query.

O(nilogT?) = O(nilogT) time for the binary search and
O(P) to output the queried result, whef2 is the number of
outputted codes.
From the above five steps, we have the following main result. In this section, some experimentations are carried out to
Theorem 1: Given a query window of size; x ns, the pro- demonstrate the performance of the proposed algorithm and the
posed algorithm take®&(n;logT 4+ P) time to perform the naive algorithm. Both algorithms are implemented in Borland
window query on a compressed image, where max(.1, n2); C++ builder and are executed on tRentium 233basedPC
T x T isthe image size, ankt is the number of outputted codeswith the same inputs. Fo®56 x 256 gray images, say F16,
Return to Fig. 5. A simulation for Steps 1-4 is given. Initiallykids, bridge, and boat (see Fig. 6), compressed by using Hilbert
the query window has 33 maximal blocks by Step 1. Thesean with parameters = 128 and7* = 15 [14] are used

VI. EXPERIMENTAL RESULTS
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TABLE Il
EXPERIMENTAL RESULTS FORSQUARE WINDOWS ON F16

Maximal | (1,6,1), (1,7,1), ., (1,14,1); (8,6,1), (8,7,1); -, (8,14,1); (2,14,1), (3,14,1), ..., (7,14,1);
Blocks | (2,6,2), (2,8,2), ..., (2,12,2); (4,6,2), (6,6,2); (4,12,2), (6,12,2); (4,8,4)
Hilbert | (61, (62), (67), (66), (7). (76), (81), (82), (87); (214), (213), (128), (129), (142), (143),

92,95); (44,47), (40,43); (96,99), (108,111); (112,127)

40,43), (44,47), (48,51), (61), (62), (66), (67), (68,71), (72,75), (76), (77), (81), (82), (87),
(88), (91), (92,95), (96,99), (100), (103), (104), (107), (108,111), (112,127), (128), (129),
(142), (143), (144), (147), (148), (213), (214)

Merging | (40,51),(61,62),(66,77), (81,82),(87,83),(91,100),(103,104),(107,129),(142,144),(147, 148)

(
G s
orders | (144), (147), (148); (88), (91), (100), (103), (104), (107); (48,51), (68,71), (72,75),
( (
(

Sorting

(213,214)
as the inputs. Under the threshdlte = 15, the number of TABLE IV
bits required for representing one pixel in average is 3.595 EXPERIMENTAL RESULTS FORSQUARE WINDOWS ONKIDS
with respect to the original 8 bits for representing one pixel. | <Fidow size 1 [ Tours 560 [ Comre | Tomr 569 | Ty E.
addition, the signal to noise (SNR) ratio is 33.406. 20 0.219 | 0001369 | 0.891 | 0.000278 | 75.4209
First, we set,; = ny = n and randomly choose the starting 40 0312 | 0000975 | 3.661 | 0.000286 | 91.4777
. ind F Th 1 1 60 0613 | 0001277 | 7.977 | 0.000277 | 92.3154
points to generate 100 query windows. From Theorem 1, 80 0.922__| 0.001441 | 14.176__| 0.000277 | 93.4960
parameterd” and P are the same for the proposed algorithn 100 1.102 | 0.001378 | 22.219 | 0.000278 | 95.0403
and the naive algorithm. Thus, the execution time required 120 1434 | 0001494 | 32.008 | 0.000278 | 95.5199
: . . i 140 1582 | 0.001413 | 43.609 | 0.000278 | 96.3723
the proposed algorithm and the naive algorithm are rewritte 160 1875 10001465 | 57102 1 0.0005°5 | 567162
asCyurs x n for some constar®,,,,., andC,,,,, x n? for some 180 2249 | 0.001562 | 72251 | 0.000279 | 96.8872
constant,,,,,, respectively. The experimental results for squar 200 2512 | 0.001570 | 89.273 | 0.000279 | 97.1862
windows are shown in Tables IlI-VI for F16, kids, bridge, and
boat, respectively. For square windows with different widths, TABLE v

each row in the four tables shows the total execution time for

. g . . ; EXPERIMENTAL RESULTS FORSQUARE WINDOWS ON BRIDGE
performing 100 window queries using the proposed algorithm

and the naive algorithm, which are denotedRyy,., and7,,., Windog(’) sizen | T oure é;eC) 0551?4 . T, nguBés;c) Chav R,

. . . 001 . 0.000276 | 77.4632
respectively. The symbol “sec” denotes second. F@Gm, 0 0512 10001600 | 34650000271 (853407
(Crav), it is Observed that the execution time of the propose 60 0.637 | 0.001327 | 7.941 | 0.000276 | 91.9783
algorithm (the naive algorithm) are linearly proportionalrto 18(;30 ?i’;g 888138 ;;‘;g; 8888;;2 gizggl
(n”) within a smaI_I range centered arpund 0.0014 (Q.OOO 2¢ 120 1301 10001440 | 32.043 0000278 | 956590
Hence, the experimental results confirm the theoretical an: 140 1152 | 0.001350 | 43.669 | 0.000279 | 96.5376
ysis. The improvement ratio of the execution time required i igg ;gg; 8881;22 fggg 88883;3 gggiig
the proposed algorithm over the naive algorithm is denoted | 500 2492 [ 0.001558 | 89938 1 0.000279 [ 972075

R, = (Thav—Tours /Thnav)x100% as shown in the final column
of the following tables.

Second, the arbitrary rectangular windows are used as the in- TABLE VI
puts. Ten types of area are used in the experimentations and  EXPERIMENTAL RESULTS FORSQUARE WINDOWS ON BOAT
they are 3000, 5000, 7000, -, and 21 000. For each specific

. . Window size n | Tours (s€C) Clours Thav (seC) Chav R,

area, 100 query windows are generated by randomly choosi 20 0203 0001260 | 0906 1 0.000283 | 77,5938
the starting points and the width and height of the window. Th 40 0402 [ 0.001256 | 3.578 | 0.000280 | 88.7647
comparison of execution time between the proposed algoritr 60 0594 | 0.001238 | 7.965 | 0.000277 | 92.5424
) ) o . 20 0.926 | 0.001447 | 14.141 | 0.000276 | 93.4517

and the naive algorithm are shown in Fig. 7(a)—(d), for F16, kid: 100 1118 9001135 | 22.152 | 0.000277 | 94.9176
bridge, and boat, respectively, where the horizontal axis in ea 120 1422 | 0.001481 | 31.977 | 0.000278 | 95.5531
figure denotes the window area, each unit beifigy From Ta- 140 1.527 | 0.001363 | 43591 | 0.000278 | 96.4970
. o . 160 1.891 0.001477 | 57.019 | 0.000278 | 96.6838

bles llI-VI and Fig. 7, itis observed that the proposed algorithr 20 3152 0001494 | 72358 | 0.0005°5 970218
is faster than the naive algorithm and has about 72—98% time il 200 2434 | 0.001521 | 89.367 | 0.000279 | 97.2764

provement. From Fig. 7, the larger the query window becomes,
the better the performance is. This fits Theorem 1.
the query time is reduced. Given a query window of gizex

na, the proposed algorithm takéxn,log T + P) time to per-

VIl ConcLUSIONS form the window query, where; = max(ni, n2), T x T is

We have presented a fast algorithm for window query dhe image size, an@ is the number of outputted codes. The
Hilbert-scan-based compressed gray images. Using the strategyposed algorithm improves the naive algorithm, which needs
of maximal quadtree blocks to decompose the query windo®{nn; log T+ P) time, significantly. The experimental results
each maximal block is used to perform the window query aradso confirm the theoretical analysis.
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