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Space-Filling Approach for Fast Window Query on
Compressed Images

Kuo-Liang Chung, Yao-Hong Tsai, and Fei-Ching Hu

Abstract—Based on the space-filling approach, this paper
presents a fast algorithm for window query on compressed images.
Given a query window of size 1 2, the proposed algorithm
takes ( log + ) time to perform the window query, where

= max( 1 2) and is the image size; is the
number of outputted codes. The proposed algorithm improves the
naive algorithm, which needs ( 1 2 log + ) time, signifi-
cantly. Some experimentations are carried out to demonstrate the
computational advantage of the proposed algorithm. From the
experimental results, it is observed that the proposed algorithm
has about 72–98% time improvement when compared to the naive
algorithm.

Index Terms—Compressed images, Hilbert scan, image data-
base, maximal quadtree blocks, space-filling curve, window query.

I. INTRODUCTION

T HE ORIGINAL problem of space-filling curves was found
by Cantor [7] that the interval , can be mapped bijec-

tively onto the square . Peano [24] settled this problem
by constructing a curve that passes through every entry of a
two-dimensional region. Curves with this property are called
space-filling curves or Peano curves. Afterwards, many variants
of space-filling curves were invented by Hilbert [12], Moore
[21], Lebesgue [18], and so on. The detailed descriptions are re-
ferred to see the book [27]. Applications of space-filling curves
are studied in the area of image analysis , [15], [28], image com-
pression [16], [17], [25], image encryption [6], [8], vector me-
dian filtering [26], ordered dither [30], database access analysis
[4], [13], bandwidth reduction [5], and so on [27].

Hilbert was the first who made this phenomenon of
space-filling curves luminous to the geometric imagination.
Thus, among these space-filling curves, Hilbert curve [12] is
the most well-known. One important feature of Hilbert curve is
that it scans the neighboring entry in the image continuously.
Then, the scanning order of Hilbert curve, named Hilbert scan,
preserves the proximity property of the original image. Liu and
Schrack [19], [20] presented an efficient algorithm to encode
and decode the Hilbert order from two-dimensional (2-D) and
three-dimensional (3-D) region into a one-dimensional (1-D)
curve containing the image of the corresponding region and vice
versa. Recently, some image compression methods based on

Manuscript received November 13, 1998; revised June 13, 2000. This
work was supported by NSC88-2213-E011-005/006. The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Tsuhan Chen.

The authors are with the Department of Information Management, Institute
of Computer Science and Information Engineering, National Taiwan Uni-
versity of Science and Technology, Taipei 10672, Taiwan, R.O.C. (e-mail:
klchung@cs.ntust.edu.tw).

Publisher Item Identifier S 1057-7149(00)10071-5.

Hilbert scan were developed [14], [16], [17]. For convenience,
a gray image compressed by using Hilbert scan is simply called
compressed image throughout this paper. Window query [2],
[22], [23] is an important query operations in image databases.
Given a compressed image, in this research, the window
query wants to report the corresponding compressed subimage
without the need to decompress the compressed image. After
all, decompressing takes a lot of time and a window query does
not need refer to the full image.

Employing the maximal blocks partition strategy [3], [29],
some properties of Hilbert order, and the related fast mapping
formula [19], this paper presents a fast algorithm for window
query on compressed images. Given a query window of size

, the proposed algorithm takes time
to perform the window query, where and

is the image size; is the number of outputted codes. The
proposed algorithm improves the naive algorithm, which needs

time. Some experimentations are carried
out to demonstrate the computational advantage of the proposed
algorithm. From the experimental results, it is observed that the
proposed algorithm has about 72% to 98% time improvement
when compared to the naive algorithm.

The rest of the paper is organized as follows. In Section II, the
definition of the Hilbert curve and the mapping (encoding) for-
mula from the - and -coordinates to the Hilbert order are de-
scribed. In Section III, we describe the method for compressing
gray images based on the Hilbert scan. Section IV presents the
algorithm for generating maximal blocks for the given window.
Section V presents the proposed algorithm for window query
on compressed images. Some experimental results are demon-
strated in Section VI. Finally, Section VII addresses some con-
clusions.

II. HILBERT CURVE AND THE ENCODING FORMULA

Consider a gray image represented as an array in the
domain { }, where

and are integers. A Hilbert curve [12] can be obtained by
using a recursive procedure which passes through all the entries
in the given image space. For example, the Hilbert curves of
resolution , and are shown in Fig. 1, where .
Each pixel in the given 2-D image space is usually needed to
be mapped into one point in the 1-D space Hilbert curve. Each
position on the curve is denoted by an integer, say the Hilbert
order and the Hilbert orders along the Hilbert curve form a
strictly increasing sequence . For an image
space, the original point of the- and -coordinates is defined
at the lower-left corner of the image space. For example, the

1057–7149/00$10.00 © 2000 IEEE
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Fig. 1. Hilbert curves for resolutionr = 1; 2, and 3.

corresponding Hilbert orders of the entries ( ) and ( ) in
Fig. 1(a) are 1 and 2, respectively.

Using the encoding formula developed by Liu and Schrack
[19], each entry ( ) in the image space can be transformed
into the corresponding Hilbert orderefficiently. We have as-
sumed that the image size is of . Let and let

and be represented by and
, i.e., and ,

where { }. The Hilbert order can be represented
by a quaternary digit string , i.e.

, where { }. Let the two bits of a qua-
ternary digit in be represented by and . The en-
coding formula is listed as follows:

(1)

(2)

where and and can be derived by
the following iterative formula:

(3)

(4)

(5)

(6)

where . Based on the above formulas,
(1)–(6), given the - and -coordinates of one pixel in the image
space, the Hilbert order can be derived in
time.

Return to Fig. 1(a). For the pixel at ( ), the coordinate
values are and . Since , we
have and by (3) and (4). It follows that

and by (1) and (2),
respectively. The corresponding Hilbert order is .

III. I MAGE COMPRESSION USINGHILBERT SCAN

If a gray image of size is scanned along the Hilbert
curve, the generated gray levels of the pixels in the image form

a 3-D curve, which is called the Hilbert scanned curve of gray
levels (HSCG). In most cases, the difference of gray levels be-
tween two neighboring pixels in the image space is bounded by
some small value. Due to the proximity property, the constructed
HSCG can be partitioned into some segments by using the in-
terpolation method.

For each segment, the beginning point, ending point, and their
gray levels form a code, which is used to represent the segment.
In practice, the memory required in one segment is less than that
required for representing those gray levels. Thus, if the orig-
inal gray image is represented by a set of codes, which denote
the generated segments, it achieves the compression effect. Ka-
mataet al.[17] presented an efficient algorithm for compressing
gray images using the Hilbert scan and the zero-order interpo-
lation. Jian [14] presented a method using first-order interpo-
lation, which is based on the technique of polygon approxima-
tion [1], [10] on the HSCG. Since the first-order interpolation
method has a better fitting effect to the original gray image than
that in the zero-order interpolation method, we thus adopt the
former method in this paper.

The segmentation process in the first-order interpolation
method is first to divide the generated HSCG into some par-
titions, each partition with length . Since the total length of
HSCG is , there are partitions. The th
partition of HSCG for is denoted by , where

. Without loss of generality, we only focus on
the th partition and for simplicity, is represented by .

As shown in Fig. 2(a), let
be the first-order approximation of . The division

point is maximum in
the segment is used to divide into two smaller segments
which will approximate better. The two divided segments
are represented by

and
. Then, the condition is tested,

where for or 2 and is
the specified threshold. If , the refinement process is
repeated; otherwise it is stopped.

Fig. 2 shows the first two steps of the division (refinement)
process of the approximation method. Fig. 2(a) shows the first
division process to generate and . In Fig. 2(b), is
the new division point and and are the new refined
segments for representing at the left of the division point

.
When , the approximated polygon lines, i.e., the

generated segments, will be quite similar in shape to the original
HSCG because each division point is determined to be the point
in the original HSCG with the highest curvature. We have known
that there are partitions. Suppose there are segments in
one partition, then the compressed output of the corresponding
subimage with respect to that partition is a sequence of codes
denoted by ( ) for , where and

are the beginning point and ending point of theth segment;
and are the gray levels of and , respectively. In

fact, and ( and ) are the same points in the
HSCG. Thus, only the beginning point (or ending point) and its
gray level are sufficient to represent one code. As a result, the
memory required in the outputted codes can be reduced to a half.
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Fig. 2. First two steps of first-order interpolation.

IV. M AXIMAL QUADTREE BLOCKS

To speed up the window query in a quadtree-based image
database, a well-known strategy is first to decompose each
window into a set of square subwindows according to the
quadtree decomposition [2], [22], [23]. These square subwin-
dows are named maximal quadtree blocks, maximal blocks for
simplicity. For a query window, the - and -coordinates of
its lower-left corner is used to denote the window’s location,
which is called starting point of the window. Thus, a query
window is denoted by , where is the height
and is the width of the window. For example, the window

= in Fig. 3 is considered, which is highlighted
by four thick lines on its boundary. There are 33 maximal
blocks in and 24 maximal blocks are of width 1; eight
maximal blocks are of width 2, e.g., and ; one is of width
4, i.e., . Each maximal block is a square block and is denoted
by , where ( ) is the - and -coordinates
of its lower-left corner and is the width of the maximal
block. Therefore, these 33 maximal blocks are denoted by

, , and = .
Given an arbitrary rectangular window of size , Aref

and Samet [3] presented an -time algorithm for
decomposing the query window into a set of maximal blocks,
where ) and is the size of the queried
image. In addition, Dyer [11] showed that the number of gen-
erated maximal blocks is in the worse case. Recently, an
optimal algorithm was presented by Tsaiet al. [29] for finding
the maximal blocks in -time. For completeness of this

Fig. 3. Query window of size9� 8 on the image of size2 � 2 .

paper, we outline how their algorithm works. The window
and the queried image shown in Fig. 3 are used to

explain their algorithm.
The technique of their algorithm is repeatedly splitting a strip

of maximal blocks from the four sides of the query window.
Initially, the blocks of size are generated and the vari-
able is set to 1. Parameters, , , and , are the -coor-
dinate, -coordinate, height, and width of the window, respec-
tively. Since ( , nine maximal blocks

for are generated and the windowis
split by moving out a vertical strip of size from the left side
of the window. The remaining window becomes .
Next, since ( , we do nothing. Since
( , nine maximal blocks

for are generated and the
remaining window becomes . Similarly, six max-
imal blocks for are gener-
ated since ( . The remaining
window is denoted by . After performing the above
four steps, is increased by one, i.e., and the same steps
are repeated until the window becomes null. The other maximal
blocks can be obtained by the same arguments.

V. PROPOSEDALGORITHM FOR WINDOW QUERY ON

COMPRESSEDIMAGES

After describing some related techniques mentioned in Sec-
tions II–IV, this section presents a novel approach using the pre-
vious techniques as primitives for window query on compressed
images.

Suppose the Hilbert orders have been determined in the image
space and the given window has been partitioned into a set of
maximal blocks. First, the following observation is given.

Observation 1: For each maximal block, the associated
Hilbert orders form a strictly increasing sequence.

Since the number of entries in the window is ,
using the naive approach, the window query task can be
done by querying each entry in the compressed image. For
each entry, it takes query time. For the window,
it takes query time. Applying the sorting
algorithm [9] according to their Hilbert orders, these queried
codes are sorted in an increasing sequence and it takes
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Fig. 4. Hilbert curve map for Fig. 3.

since , .
Then these sorted codes are merged into a smaller set of codes.
Totally, the naive algorithm takes time to
perform the window query, where is the number of final
outputted codes.

Looking Fig. 4, the following observation is very important
to improve the naive algorithm.

Observation 2: For each maximal block, suppose the- and
-coordinates of its lower-left corner has been known and the

corresponding Hilbert order has been calculated. If the orien-
tation of the maximal block can be determined, then the min-
imal Hilbert order and the maximal Hilbert order in the maximal
block can be determined.

Following Observation 2, in what follows, we present an ef-
ficient method to determine the minimal Hilbert order and the
maximal Hilbert order in one maximal block.

Given a maximal block , the Hilbert order of
the entry ( ) can be obtained by the formulas from (1)–(6).
The orientation of the Hilbert curve with respect to the begin-
ning point and ending point in the maximal block can be ob-
tained at the same time when is computed. There are totally
four types of orientations for the Hilbert curve, say de-
noting the direction to the bottom; denoting the direction
to the right; denoting the direction to the top; de-
noting the direction to the left. Let be
the orientation of a block. For the first type, , the
beginning point is at the lower-left corner of the maximal block
and the corresponding Hilbert order is also ; the ending
point is at the lower-right corner of the maximal block and the
corresponding Hilbert order is .

Consequently, according to Table I, the minimal Hilbert order
and the maximal Hilbert order in one maximal block can

be determined using time.
As an example, Fig. 5 is given to demonstrate how Table I

works. Consider the maximal block . For the entry
( ), the coordinate values are and .
By (3) and (4), and . Then,

and by (5)
and (6). Similarly, we have , , ,
and . By (1) and (2), the Hilbert order of ( ) is

TABLE I
DETERMINING THE MINIMAL /MAXIMAL

HILBERT ORDERS INONE MAXIMAL BLOCK

Fig. 5. Hilbert orders map for Fig. 4.

. Since the block is of size ,
which denotes that the orientation

of the corresponding maximal block is to the right. From Table I,
we have that the minimal Hilbert order in the maximal block is

and the maximal Hilbert order is
.

After presenting how to determining the minimal and max-
imal Hilbert orders in one maximal block using time,
the proposed formal algorithm consisting of five steps is listed
below.

Algorithm: Window Query:Input: An query window
and the compressed imagewith codes.

Output: The corresponding codes in.
Step 1—(Generating Maximal Blocks):For the query

window , the set of maximal blocks, say , corresponding
to is generated by using the linear-time algorithm proposed
by Tsaiet al. [5]. Note that for , there are maximal
blocks in the worst case [11].

Step 2—(Computing the Related Hilbert Orders):For each
maximal block, we compute the minimal and maximal Hilbert
orders using Table I and it can be done in time. For a

maximal block,the minimal and maximal Hilbert orders
are set to be the same. Since for the window, there are at most

maximal blocks, this step takes time to deter-
mine the related Hilbert orders for these maximal blocks.
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TABLE II
SIMULATION FOR SORTING AND MERGING

Then, these calculated Hilbert orders form a sequence. Up to
here, the generated maximal blocks inare transferred to the
sequence .

Step 3: (Sorting):Since the total maximal blocks in are
not obtained as the orders of the Hilbert scan, the sequence
needs to be sorted to be an increasing sequence. In this step, the
quick-sort algorithm is used and it takes time. The
sorted sequence is denoted by.

Step 4: (Merging): If the difference of the Hilbert orders of
the beginning point of the current block and the ending point of
the previous block is exactly one, the two consecutive Hilbert
subcurves in the two blocks can be merged to be one larger curve
in order to reduce the number of Hilbert orders used. Only the
Hilbert orders of the beginning point of the first block and the
ending point of the last block are needed to represent the new
merged block if some blocks can be merged. We thus merge
the sequence and obtain the merged sorted-sequence .
Since the sequence needs to be traversed only once, this step
takes time. The size of is bounded by .

Step 5: (Querying):For each pair of Hilbert orders in
, we now want to find the corresponding codes in the

compressed image. Consider the first pair in , say
and for . Using as the first key, the

binary search [9] is used to find the Hilbert code in, say
( ), at which the condition
holds. If is not equal to , the code is split into
( ) and ( ), where

.
Similarly, using as the second key, the binary
search is used again to find the Hilbert code in, say
( ), at which the condition
holds. If is not equal to , the code is split into
( ) and ( ), where

. Then,
we output the codes between to . Since there are at most

segments and maximal blocks, this step totally takes
= time for the binary search and

to output the queried result, where is the number of
outputted codes.

From the above five steps, we have the following main result.
Theorem 1: Given a query window of size , the pro-

posed algorithm takes time to perform the
window query on a compressed image, where= max( );

is the image size, and is the number of outputted codes.
Return to Fig. 5. A simulation for Steps 1–4 is given. Initially,

the query window has 33 maximal blocks by Step 1. These

Fig. 6. Four gray images.

maximal blocks are shown in the first row in Table II. In Step
2, we compute the minimal and maximal Hilbert orders for each
maximal block. These pairs of Hilbert orders are shown in the
second row in Table II. Then, they are sorted in an increasing
order by Step 3. The sorted results are shown in the third row
in Table II. By Step 4, 33 ordered pairs of Hilbert orders are
merged into 11 pairs and they are shown in the last row in
Table II. Thus, we can reduce the number of accessing times
for the window query and achieve the goal of speeding up the
window query.

VI. EXPERIMENTAL RESULTS

In this section, some experimentations are carried out to
demonstrate the performance of the proposed algorithm and the
naive algorithm. Both algorithms are implemented in Borland
C++ builder and are executed on thePentium 233-basedPC
with the same inputs. Four gray images, say F16,
kids, bridge, and boat (see Fig. 6), compressed by using Hilbert
scan with parameters and [14] are used
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TABLE III
EXPERIMENTAL RESULTS FORSQUARE WINDOWS ON F16

as the inputs. Under the threshold , the number of
bits required for representing one pixel in average is 3.595
with respect to the original 8 bits for representing one pixel. In
addition, the signal to noise (SNR) ratio is 33.406.

First, we set and randomly choose the starting
points to generate 100 query windows. From Theorem 1, the
parameters and are the same for the proposed algorithm
and the naive algorithm. Thus, the execution time required in
the proposed algorithm and the naive algorithm are rewritten
as for some constant and for some
constant , respectively. The experimental results for square
windows are shown in Tables III–VI for F16, kids, bridge, and
boat, respectively. For square windows with different widths,
each row in the four tables shows the total execution time for
performing 100 window queries using the proposed algorithm
and the naive algorithm, which are denoted by and ,
respectively. The symbol “sec” denotes second. From
( ), it is observed that the execution time of the proposed
algorithm (the naive algorithm) are linearly proportional to
( ) within a small range centered around 0.0014 (0.000 28).
Hence, the experimental results confirm the theoretical anal-
ysis. The improvement ratio of the execution time required in
the proposed algorithm over the naive algorithm is denoted by

as shown in the final column
of the following tables.

Second, the arbitrary rectangular windows are used as the in-
puts. Ten types of area are used in the experimentations and
they are 3000, 5000, 7000, , and 21 000. For each specific
area, 100 query windows are generated by randomly choosing
the starting points and the width and height of the window. The
comparison of execution time between the proposed algorithm
and the naive algorithm are shown in Fig. 7(a)–(d), for F16, kids,
bridge, and boat, respectively, where the horizontal axis in each
figure denotes the window area, each unit being. From Ta-
bles III–VI and Fig. 7, it is observed that the proposed algorithm
is faster than the naive algorithm and has about 72–98% time im-
provement. From Fig. 7, the larger the query window becomes,
the better the performance is. This fits Theorem 1.

VII. CONCLUSIONS

We have presented a fast algorithm for window query on
Hilbert-scan-based compressed gray images. Using the strategy
of maximal quadtree blocks to decompose the query window,
each maximal block is used to perform the window query and

TABLE IV
EXPERIMENTAL RESULTS FORSQUARE WINDOWS ON KIDS

TABLE V
EXPERIMENTAL RESULTS FORSQUARE WINDOWS ON BRIDGE

TABLE VI
EXPERIMENTAL RESULTS FORSQUARE WINDOWS ON BOAT

the query time is reduced. Given a query window of size
, the proposed algorithm takes time to per-

form the window query, where is
the image size, and is the number of outputted codes. The
proposed algorithm improves the naive algorithm, which needs

time, significantly. The experimental results
also confirm the theoretical analysis.
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Fig. 7. Performance comparison for rectangular windows.
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