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Abstract

Shape detection is a fundamental problem in image processing field. In shape detection, lines, circles, and ellipses are the
three most important features. In the past four decades, the robustness and the time speedup are two main concerned issues
in most developed algorithms. Previously, many randomized algorithms were developed to speed up the computation of
the relevant detection successfully. This paper does focus on the time speedup issue. Based on Bresenham’s drawing par-
adigm, this paper first presents a novel lookup table (LUT)-based voting platform. According to the proposed LUT-based
voting platform, we next present a novel computational scheme to significantly speed up the computation of some existing
randomized algorithms for detecting lines, circles, and ellipses. Moreover, the detailed time complexity analyses are pro-
vided for the three concerned features under our proposed computational scheme and these derived nontrivial analyses
also show the relevant computational advantage. Under some real images, experimental results illustrate that our proposed
computational scheme can significantly speed up the computation of some existing randomized algorithms. In average, the
execution-time improvement ratios are about 28%, 56%, and 48% for detecting lines, circles, and ellipses, respectively, and
these improvement ratios are vary close to the theoretic analyses.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Shape analysis is a fundamental problem in image processing field [1–3]. In shape analysis, lines, circles, and
ellipses are the most three important features since they often occur in the image. In the past four decades,
the robustness and the time speedup are two main concerned issues in most developed algorithms. These
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developed algorithms are partitioned into two categories, namely the deterministic algorithms and the nonde-
terministic algorithms.

Most of the existing deterministic algorithms are based on the Hough transform (HT) [4,5]. Assume the
input image have been transformed into its edge map. The HT maps each edge pixel into a parameter space,
i.e. ðq; hÞ-space where q denotes the normal distance and h denotes the normal angle. Although these HT-based
algorithms have robustness gains, a large amount of computing time is needed in the voting process of the rel-
evant accumulator arrays which are used to emulate the corresponding parameter spaces. Therefore, many
improved HT-based algorithms [6–26] have been developed to reduce the computing time by utilizing some geo-
metrical properties and the gradient information to decompose the parameter space into fewer dimension
parameter space. However, these computing time improvement still can not meet the real-time demand.

Based on the randomized approach, many nondeterministic algorithms have been developed to speed up
the computing time to meet the real-time demand. Among these developed nondeterministic algorithms
[27–44], Kiryati et al. [30] presented a probabilistic HT (PHT) to detect lines. The PHT only uses a small, ran-
domly selected subset of edge pixels to perform the HT on the ðq; hÞ-space. Later, several improved versions of
the PHT were developed and they are the progressive PHT (PPHT) [39], the gradient-based PPHT (GPPHT)
[42], and the one with novel stopping rules [35]. Employing the candidate line concept, Xu et al. [29,31] pre-
sented an efficient randomized HT (RHT) for line detection. For convenience, Xu et al.’s method is called the
RHTL. Following the RHTL, some improved versions [36,40] were investigated. Recently, plugging the prun-
ing-and-voting (PAV) strategy into the RHTL, the PRHTL [44] was developed to speed up the candidate line-
based randomized algorithms.

For detecting circles, the probabilistic circular HT (PCHT) was proposed by Ylä-Jääski and Kiryati [32].
Based on the idea in the PHT, the PCHT uses a very efficient stopping scheme, which is measured by the sta-
bility test via the ranks of the highest peaks in the accumulator array, to speed up the execution-time perfor-
mance and increase the robustness performance. In [29,31], an efficient randomized HT approach for circle
detection, which is called the RHTC, was presented by Xu et al. Each time, the RHTC selects three edge pixels
randomly and then their corresponding mapped points in the parameter space are collected by voting on the
accumulator array or the link-list data structure. Based on a parameter-free approach, an improved random-
ized algorithm [41], called the RCD, was presented to detect circles. Later, the PAV-based RCD [44], called the
PRCD, was developed to speed up the RCD. Employing some geometrical properties [12], McLaughlin [37]
proposed a RHT-based approach for detecting ellipses. For convenience, McLaughlin’s two-stage method is
called the RHTE. Experimental results show that the RHTE has better execution-time when compared to the
previous two methods [15,12]. Combining the PAV strategy and the RHTE, the PRHTE [44] was proposed to
improve the execution-time performance of the RHTE.

This paper does focus on presenting a new computational scheme to speed up the computational require-
ments in several existing randomized algorithms for detecting the three concerned features. Based on Bresen-
ham’s drawing paradigm [45–48], this paper first presents a novel lookup table (LUT)-based voting platform.
According to the proposed LUT-based voting platform, we next present a novel computational scheme to sig-
nificantly speed up the computation required in the previous RHTL [29,31], RCD [41], and RHTE [37] for
detecting lines, circles, and ellipses, respectively, while preserving the same robustness. Moreover, for each
concerned feature, a solid time complexity analysis of our proposed computational scheme is provided to
show the relevant computational advantage. In average, experimental results show that the execution-time
improvement ratios are about 28%, 56%, and 48% for detecting lines, circles, and ellipses, respectively, and
these improvement ratios are vary close to our theoretic time complexity analyses. Further, experimental
results also show that plugging our proposed LUT-based voting platform into the previous three algorithms
can lead to higher execution-time improvement ratios when compared to the PAV-based algorithms [44].

The remainder of this paper is organized as follows. In Section 2, according to Bresenham’s drawing par-
adigm, the proposed LUT-based voting platform is presented. In Section 3, based on the proposed tuning- and
LUT-based voting platform, a novel computational scheme and its analyses of computation gains are pre-
sented. In Section 4, the proposed computational scheme leads to significantly speed up the computation of
some existing randomized algorithms for detecting lines, circles, and ellipses. In addition, the related nontrivial
time complexity analyses are provided. Section 5 demonstrates the experimental results. Finally, Section 6
addresses some concluding remarks.
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2. The proposed novel LUT-based voting platform

This section is partitioned into two subsections. In Section 2.1, we first review the previous candidate fea-
ture-based randomized algorithms (CFRAs), such as the RHTL, the RCD, and the RHTE. In the same sub-
section, we also point out the computational bottleneck existed in the previous CFRAs. In order to overcome
the computational bottleneck in the CFRAs, based on Bresenham’s drawing paradigm [45,46,48,47], our pro-
posed LUT-based voting platform is presented in Section 2.2.

2.1. The previous candidate feature-based randomized algorithms: CFRAs

Definition 1 (Candidate Features). Lines, circles, or ellipses determined by a few randomly selected edge pixels
are called candidate features (CFs).

Definition 2 (CF-based randomized algorithm). For the CF-based randomized algorithms (CFRAs), such as the
RHTL, the RCD, and the RHTE, the coordinates of all edge pixels vl ¼ ðxl; ylÞ are initially stored in the set V.
For determining the CF, the CFRA first randomly select a few edge pixels from V to determine the CF. After
the CF is detected, the voting process is applied to calculate the distance between each of the remaining edge
pixels and the CF, then the counting step is performed to sum up the number of edge pixels lying on the CF.
From the counting result, the CFRA can finally determine whether the CF is a true feature or not.

By Definition 2, the CFRA consists of the following four steps:

Step 1. (Initialization) Save each edge pixel vl ¼ ðxl; ylÞ to the set V. Let Cf and Cv denote the failure counter
and the voting counter, respectively. Two thresholds Tf and Tmin are used where Tf denotes the number
of failures that we can tolerate; Tmin is used to determine whether the CF is a true feature or not.

Step 2. (Determine the CF) Randomly picking a few edge pixels out of V to determine the CF. For line detec-
tion, the RHTL takes two edge pixels to determine the candidate line. For circle detection, the RCD
takes four edge pixels to determine the candidate circle. For ellipse detection, three edge pixels are
selected by the RHTE to construct the candidate ellipse.

Step 3. (Voting process) Set the voting counter Cv to 0. For each edge pixel vl ¼ ðxl; ylÞ in V, the distance
between the CF and the edge pixel vl, say dl!F , is calculated. If the value of dl!F is less than or equal
to the threshold n, say M ¼ 1, perform Cv ¼ Cv þ 1.

Step 4. (Determine the true feature) Using the final value of Cv, the CFRA can determine whether the CF is a
true feature or not. In the RHTL, if the value of Cv is greater than or equal to Tmin, the CF is a true
feature. In the RCD and RHTE, the CF is a true feature if the ratio of Cv over the perimeter of the CF
is greater than the threshold Tmin (the estimation for the perimeter of the ellipse is shown in Appendix
1). If the CF is a true feature, we take these Cv edge pixels out of V and go to Step 2. Otherwise, the CF
is viewed as a false feature and perform Cf ¼ Cf þ 1. If Cf ¼ T f , then stop; otherwise, go to Step 2.
After running many testing images for the three previous CFRAs, experimental results indicate the following
property.

Property 1 (Computational bottleneck in the CFRA). On the Pentium 4 personal computer with 1.8 GHz and

the C programming language, the ratios of the execution-time required in the voting process (see Step 3 in the

above CFRA) over the total execution-time for the RHTL, the RCD, and the RHTE are about 65%, 91%, and

72.5%, respectively. Consequently, the voting process is the computational bottleneck in the CFRA.

From Property 1, to reduce the execution-time required in the voting process significantly, the proposed
LUT-based voting platform is presented in the following subsection.

2.2. The proposed LUT-based voting platform

Instead of calculating the distance between the edge pixel and the CF in the voting process of the CFRA,
our proposed LUT-based platform only performs one simple query such that whether the edge pixel is lying
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on the CF or not can be determined fast. The proposed LUT-based platform first creates a 2-D binary array,
say Alut, which is based on the Bresenham’s drawing paradigm. Given the related parameters of one CF, that
CF can be drawn on an integer domain very fast. For example, given two end points, the corresponding line
can be drawn very fast and concerns only simple integer additions and shift operations.

Definition 3 (LUT-based platform). According to the related parameters of the CF, using Bresenham’s
drawing paradigm to draw the CF on the 2-D binary array where the bit ‘1’ denotes the feature point. The
array Alut associated with the drawn CF is called the LUT-based platform.

Let the related parameters of the candidate circle be the center ðxc; ycÞ and the radius r. For example, given
ðxc; ycÞ ¼ ð16; 17Þ and r ¼ 12, by Definition 3, the corresponding LUT-based platform is depicted in Fig. 1.

Definition 4 (Voting on LUT-based platform). The (x,y)-coordinate of each edge pixel, say vl ¼ ðxl; ylÞ, is used
as the key to perform the query on the LUT-based platform Alut. If Alutðxl; ylÞ ¼ 1, it means that the edge pixel
vl is lying on the CF and it contributes a vote to the CF.

By Definition 4, the number of edge pixels lying on the CF are summed up to determine whether the CF is a
true feature or not.

Definition 5 (Cleaning up the LUT-based voting platform). Before detecting the next feature in the image, using
the Bresenham’s drawing paradigm again, each entry of the CF in the LUT-based voting platform is reset by
changing its value from ‘1’ to ‘0’.

From Definitions 3–5, the CFRA associated with our proposed LUT-based voting platform is presented as
follows. For convenience, the LUT-based CFRA is called the LCFRA. In the following six steps, the proposed
LUT-based voting platform is realized by Steps 3–5.

Step 1. (Initialization) After performing the initialization process in Step 1 of the CFRA, we reset the LUT-
based voting array AlutðW ;HÞ where W and H denote the width and height of testing image.
Fig. 1. The LUT-based platform for the candidate circle with center (16,17) and radius 12.



Fig. 2. The banded LUT-based voting platform with bandwidth 1.

136 K.-L. Chung, Y.-H. Huang / Applied Mathematics and Computation 190 (2007) 132–149
Step 2. (Determine the CF) This step is equal to Step 2 in the CFRA.
Step 3. (Building up the LUT-based voting platform) By Definition 3, Bresenham’s drawing paradigm is applied

to build up the LUT-based voting platform.
Step 4. (Voting process) Set the voting counter Cv to 0. By Definition 4, for each edge pixel vl ¼ ðxl; ylÞ in the

edge set V, if Alutðxl; ylÞ ¼ 1 holds, perform Cv ¼ Cv þ 1.
Step 5. (Cleaning up the LUT-based voting platform) By Definition 5, Bresenham’s drawing paradigm is

applied to clean up the LUT-based voting platform.
Step 6. (Determine the true feature) This step is equal to Step 4 in the CFRA.

In order to detect the CFs with higher tolerance, the proposed LUT-based voting platform can be extended
to a banded LUT-based voting platform where the bandwidth is specified by the user. Let the bandwidth be 1,
then the banded LUT-based voting platform of Fig. 1 is shown in the banded candidate circle of Fig. 2.

3. The proposed tuning- and LUT-based computational scheme: TLCFRA

Plugging the tuning concept into the CFRA associated with the LUT-based voting platform, which has
been described in Section 2, a new computational scheme is presented in this section. In addition, the analyses
of its computational gains are provided.

Before demonstrating the computational gains of our proposed new tuning- and LUT-based computational
scheme, for each pixel, the voting-time required in the past CFRA is evaluated first. In the voting process of
the CFRA, it first calculates the distance between the edge pixel vl ¼ ðxl; ylÞ and the CF, then one comparison
is used to decide whether vl is lying on the CF or not, and one extra addition is needed in the counting step if vl

is lying on the CF. Consequently, in worst case, the voting-time required for each edge pixel in the CFRA can
be represented by tv ¼ tdis þ tc þ ta where tdis denotes the time for the distance calculation; tc and ta denote the
time required to perform one comparison and one addition, respectively. Following the voting-time notation
tv, the CFRA takes T v ¼ m� tv ¼ m� ðtv þ tc þ taÞ time in the voting process where m denotes the number of
edge pixels in the current edge set.
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Let tlut denote the time required to build up or clean up the CF on the LUT-based voting platform Alut.
From Step 4 of the LCFRA, for each edge pixel, the voting process needs one comparison to determine
whether the edge pixel is a CF point or not and one addition is needed for increasing the counter Cv by
one. In worse case, Step 4 of the LCFRA needs tlut

v ¼ tc þ ta time. From Step 3 and Step 5 in the LCFRA,
for each CF, 2tlut time is needed to build up and clean up the LUT-based voting array Alut. For m edge pixels,
the voting-time required in Steps 3–5 of the LCFRA is at most T lut

v ¼ m� tlut
v þ 2tlut ¼ m� ðtc þ taÞ þ 2tlut

time.

Definition 6 (Tuning strategy). The voting-time improvement ratio of our proposed LCFRA over the

previous CFRA is represented by Iv ¼ T v�T lut
v

T v
¼ tdis

tdisþtcþta
� 2tlut

mðtdisþtcþtaÞ. If tdis

tdisþtcþta
� 2tlut

mðtdisþtcþtaÞ > 0 holds, the

computational gain of our proposed LCFRA can be guaranteed. On the other hand, when m P 2tlut

tdis
, our

proposed LUT-based voting platform can replace the voting process in the previous CFRA to reduce the
voting-time in the voting process. Otherwise, when m < 2tlut

tdis
, the voting process of the CFRA is used. From

Definition 6, the proposed LCFRA associated with the above tuning strategy is called the TLCFRA.

In what follows, the average voting-time improvement ratio of the TLCFRA is analyzed. Let M denote the
number of edge pixels in the initial edge set V and let the minimal number of edge pixels be 2tlut

tdis
when applying

the tuning strategy. Assume m is a random variable and the distribution of m is uniform for 2tlut

tdis
6 m 6 M . The

average voting-time improvement ratio of TLCFRA over the CFRA can be calculated by
Iv ¼
1

M

Z 2tlut
tdis
�1

0

0dmþ
Z M

2tlut
tdis

tdis

tdis þ tc þ ta

� 2tlut

mðtdis þ tc þ taÞ
dm

 !

¼ tdis

tdis þ tc þ ta

� 2tlut

Mðtdis þ tc þ taÞ
1þ ln

Mtdis

2tlut

� �
: ð1Þ
By Eq. (1), we have the following result.

Lemma 1. The average voting-time improvement ratio of the TLCFRA over the CFRA is Iv ¼ tdis

tdisþtcþta
�

2tlut

MðtdisþtcþtaÞ 1þ ln Mtdis

2tlut

� �
.

Lemma 1 indicates that Iv only reflects the average voting-time improvement ratio of the TLCFRA over the
CFRA. From Property 1, let the ratio of the average voting-time over the total execution-time be R when
plugging our proposed tuning- and LUT-based computational scheme into the three previous CFRAs, such
as the RHTL [29,31], the RCD [41], and the RHTE [37]. We have the following result.

Lemma 2. The average execution-time improvement ratio of TLCFRA over the CFRA is IT ¼ R� Iv.
4. Applications to speed up existing randomized algorithms for detecting lines, circles, and ellipses

In this section, the applications of our proposed tuning- and LUT-based computational scheme are pre-
sented to speed up the previous CFRAs for detecting lines, circles, and ellipses; the relevant three improved
randomized algorithms are called the TLRHTL, the TLRCD, and the TLRHTE, respectively. Moreover,
the related nontrivial time complexity analyses are provided to show the computational gains of the three pro-
posed TLCFRAs.

4.1. Speed up the RHTL for detecting lines

For each input edge pixel vl ¼ ðxl; ylÞ, by Lemma 1, the time tdis required in the RHTL is first considered.
For detecting lines, the RHTL needs a 2-D accumulator array, say ACC, for implementing the ðq; hÞ-space
where the value of each entry in ACC is initialized to 0. Each time, two edge pixels are randomly selected from
the edge set to determine a possible line Lq;h and the value of ACCð�q; �hÞ is increased by 1 where �q and �h denote
the quantized q and the quantized h, respectively. If the value of ACCð�q; �hÞ is equal to the specified threshold,
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the possible line Lq;h becomes a candidate line. The distance between the candidate line Lq;h and the input edge
pixel vl ¼ ðxl; ylÞ is calculated by
dl!ðq;hÞ ¼ jq� ðxl cos hþ yl sin hÞj: ð2Þ
If vl donates one vote to the candidate line Lq;h, the value of dl!ðq;hÞ must be less than or equal to the bandwidth
of the banded LUT-based voting array. In Eq. (2), the values of cos h and sin h can be reused once they have
been calculated. From Eq. (2), the calculation of dl!ðq;hÞ needs two additions, two multiplications, and one
absolute operation. Consequently, we have the following property.

Property 2. In the RHTL, for each input edge pixel, the time required for calculating the distance dl!ðq;hÞ in

Eq. (2) is bounded by tdis ¼ ð2ta þ 2tm þ tabsÞ where tm and tabs denote the time required for one multiplication and

one absolute operation, respectively.

Form Definition 3 in Section 2.2, when a candidate line Lq;h is determined, based on Bresenham’s line draw-
ing method [45], the following procedure is used to draw the banded candidate line (BCL) on the LUT-based
array. For saving space of the context, the following BCL Drawing procedure only considers Lq;h with the
slope between 0 and 1.

Procedure BCL Drawing:

Step 1. Input two end points ðx1; y1Þ and ðx2; y2Þ of the candidate line Lq;h. Let xd ¼j x1 � x2 j and
yd ¼j y1 � y2 j. If x1 > x2, perform x ¼ x2, y ¼ y2, and xe ¼ x1; otherwise, perform x ¼ x1, y ¼ y1, and
xe ¼ x2. The time required in this step is 5tas þ 2ta þ 2tabs þ tc where the symbol tas denotes the execu-
tion-time required for one assignment operation.

Step 2. Perform Alutðx; yÞ ¼ 1, Alutðx; y � 1Þ ¼ 1, and Alutðx; y þ 1Þ ¼ 1 to draw the first three line points of Lq;h.
The time required in this step is 3tas þ 2ta.

Step 3. Initialize the decision parameter as p ¼ 2yd � xd where p is used to determine where the next line point
should be drawn. The time required in this step is tas þ ta þ tm.

Step 4. Let x ¼ xþ 1. If p < 0, perform p ¼ p þ 2yd ; otherwise, perform y ¼ y þ 1 and p ¼ p þ 2ðyd � xdÞ.
Then we set Alutðx; yÞ ¼ 1, Alutðx; y � 1Þ ¼ 1, and Alutðx; y þ 1Þ ¼ 1 to draw the line points. This step
requires at most 6tas þ 6ta þ tm þ tc time.

Step 5. If x P xe, then stop; otherwise, go to Step 3. This step only needs tc time.

It is known that Alut is of size W � H and let lave ¼ maxðW ;HÞ
2

denote the average number of the line points for
Lq;h, then the time required for performing Bresenham’s BCL Drawing procedure is shown below.

Lemma 3. Performing the BCL Drawing procedure on Alut needs tlut ¼ ð9þ 6laveÞtas þ ð5þ 6laveÞtaþ
ð1þ laveÞtm þ ð1þ 2laveÞtc þ 2tabs time.

Proof. In the BCL Drawing procedure, since Step 1, Step 2, and Step 3 are only performed once, the time
required in the three steps is 9tas þ 5ta þ tm þ 2tabs þ tc. Because Step 4 and Step 5 must be performed lave times
until the condition x < xe in Step 5 is violated, the time required in the two steps is ð6tas þ 6ta þ tm þ 2tcÞlave.
Summing up all the time requirement, the total time required in the BCL Drawing procedure is
tlut ¼ ð9þ 6laveÞtas þ ð5þ 6laveÞta þ ð1þ laveÞtm þ ð1þ 2laveÞtc þ 2tabs. h

In our experiments, tas; ta; tm; tabs, and tc are 1.2, 2.2, 2.2, 6, and 3.3 ns (nano second), respectively, by using
the Pentium 4 computer with 1.8 GHz. Thus, from Property 2, we have tdis ¼ 2ta þ 2tm þ tabs ¼ 14:8 ns and
from Lemma 3, we have tlut ¼ 39:3þ 29:2lave ns.

Following Definition 6 in Section II.C, when the condition m P 2tlut

tdis
holds, the computational advantage of

our proposed TLRHTL can be guaranteed. From tdis ¼ 14:8 ns and tlut ¼ 39:3þ 29:2lave ns, the tuning strat-
egy in our proposed TLRHTL is defined as follows.

Definition 7 (Tuning strategy for line detection). In our proposed TLRHTL, if m P 5:311þ 3:946lave holds,
our proposed LUT-based voting platform is used; otherwise, the voting process of the RHTL is used.
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By using the above tuning strategy, the average voting-time improvement ratio of our proposed TLRHTL
over the previous RHTL is shown below.

Theorem 1. The average voting-time improvement ratio of our proposed TLRHTL over the previous RHTL is

Iv ¼ 0:729� 3:872þ2:877lave

M 1þ ln 7:4M
39:3þ29:2lave

� �
.

Proof. From Lemma 1 and Definition 7, the average voting-time improvement ratio of our proposed
TLRHTL over the previous RHTL is Iv ¼ tdis

tdisþtcþta
� 2tlut

MðtdisþtcþtaÞ 1þ ln Mtdis

2tlut

� �
¼ 0:729�

3:872þ2:877lave

M 1þ ln 7:4M
39:3þ29:2lave

� �
. h

By Property 1, Lemma 2, and Theorem 1, we have the following result.

Corollary 1. The average theoretical execution-time improvement ratio of our proposed TLRHTL over the

previous RHTL is about IL
T ¼ Iv � R ¼ Iv � 0:65 ¼ 0:4739� 2:517þ1:87lave

M 1þ ln 7:4M
39:3þ29:2lave

� �
.

Suppose a 256� 256 image is used in the line detection experiment. From the definition of lave, we have
lave ¼ 128. Putting lave ¼ 128 into Definition 7, it yields the tuning condition m P 511.

Corollary 2. Assume M ¼ 3000, the theoretical average time improvement ratio of our proposed TLRHTL over

the previous RHTL is 0.251.
4.2. Speed up the RCD for detecting circles

In the RCD, it first randomly selects four edge pixels each time to determine a candidate circle Cxc;yc;r in
terms of the center ðxc; ycÞ and the radius r. When Cxc;yc;r is determined, for each input edge pixel vl, the time
required for computing the distance between Cxc;yc ;r and vl is calculated by
dl!ðxc ;yc ;rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxl � xcÞ2 þ ðyl � ycÞ

2
q

� r

����
����: ð3Þ
If dl!ðxcycrÞ 6 M, say M ¼ 1, vl is said to lie on Cxc;yc;r. Consequently, we have the following property.

Property 3. In the RCD, the time required for calculating the distance dl!ðxcycrÞ is bounded by tdis ¼
4ta þ 2ts þ tr þ tabs where ts and tr denote the time required to perform one square operation and one square-root

operation, respectively.

In our proposed TLRCD, once a candidate circle Cxc;yc ;r is determined, based on Bresenham’s circle draw-
ing method [46], the following procedure is used to draw the banded candidate circle (BCC) on the LUT-based
array.

Procedure BCC Drawing:

Step 1. Input the center ðxc; ycÞ and radius r of Cxc;yc;r. Set x ¼ 0 and y ¼ r. The position ð0; rÞ denotes the first
circle point on the circumference of C0;0;r where C0;0;r denotes the circle obtained by shifting the center
of Cxc;yc;r to coordinate (0, 0). The time required in this step is 2tas.

Step 2. Let xa ¼ xþ xc and ya ¼ y þ yc, then perform Alutðxa; yaÞ ¼ 1, Alutðxa; ya þ 1Þ ¼ 1, and
Alutðxa; ya � 1Þ ¼ 1. Due to the symmetric property for the eight octants, the three symmetric circle
points can be obtained for each octant. The time required in this step is 40tas þ 32ta.

Step 3. Initialize the decision parameter as p ¼ 1� r where p is used to determine where the next circle point
should be drawn. The time required in this step is tas þ ta.

Step 4. If p < 0, the next circle point along C0;0;r is drawn at the position ðxþ 1; yÞ. In addition, perform
x ¼ xþ 1 and p ¼ p þ 2xþ 1; otherwise, the next circle point along C0;0;r is ðxþ 1; y þ 1Þ. Further, per-
form x ¼ xþ 1, y ¼ y þ 1, and p ¼ p þ 2xþ 1. This step requires at most 3tas þ 4ta þ tm þ tc time.

Step 5. Let xa ¼ xþ xc and ya ¼ y þ yc, then we set Alutðxa; yaÞ ¼ 1, Alutðxa; ya þ 1Þ ¼ 1, and Alutðxa; ya � 1Þ ¼ 1.
Due to the symmetric property for the eight octants, the time required in this step is 40tas þ 32ta.

Step 6. If x P y, then stop; otherwise, go to Step 4. This step only needs tc time.
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Let rave ¼ minðW ;HÞ
4

denote the average radius of the candidate circle, then the time required for performing
the BCC Drawing procedure is shown below.

Lemma 4. Performing the BCC Drawing procedure on Alut needs tlut ¼ 43þ 43 raveffiffi
2
p

� �
tas þ 33þ 36 raveffiffi

2
p

� �
taþ

raveffiffi
2
p ðtm þ 2tcÞ time.

Proof. In the BCC Drawing procedure, since Step 1, Step 2, and Step 3 are only performed once, the time
required in the three steps is 43tas þ 33ta. Because we apply the symmetric property of the eight octants to
the BCC Drawing procedure, Step 4, Step 5, and Step 6 are performed raveffiffi

2
p times until the condition x < y

in Step 6 is violated. After running Step 4, Step 5, and Step 6 raveffiffi
2
p times, it takes 43 raveffiffi

2
p tas þ 36 raveffiffi

2
p taþ

raveffiffi
2
p ðtm þ 2tcÞ time. Summing up all the time requirement, the total time required in the BCC Drawing proce-
dure is tlut ¼ 43þ 43 raveffiffi

2
p

� �
tas þ 33þ 36 raveffiffi

2
p

� �
ta þ raveffiffi

2
p ðtm þ 2tcÞ. h

In our experiments, it is shown that ts and tr are 2.2 and 28 ns, respectively. Thus, from Property 3, tdis

and tlut can be calculated by tdis ¼ 4ta þ 2ts þ tr þ tabs ¼ 47:2 ns and from Lemma 4, we have tlut ¼ 124:2þ
139:6 raveffiffi

2
p ns.

Following Definition 6 in Section 3, when the condition m P 2tlut

tdis
holds, the computational advantage of our

proposed TLRCD can be guaranteed. From tdis ¼ 47:2 ns and tlut ¼ 124:2þ 139:6 raveffiffi
2
p ns, the tuning strategy in

our proposed TLRCD is described below.

Definition 8 (Tuning strategy for circle detection). In our proposed TLRCD, if m P 5:263þ 5:915 raveffiffi
2
p holds,

our proposed LUT-based voting platform is used; otherwise, the voting process of the RCD is used.

Using the above tuning strategy, the average voting-time improvement ratio of our proposed TLRCD over
the previous RCD is shown below.

Theorem 2. The average voting-time improvement ratio of our proposed TRCD over the previous RCD is

Iv ¼ 0:896� 4:714þ5:298raveffiffi
2
p

M 1þ ln 23:6M
124:2þ139:6raveffiffi

2
p

� �
.

Proof. From Lemma 1 and Definition 8, the average voting-time improvement ratio of our proposed TLRCD

over the previous RCD is Iv ¼ tdis

tdisþtcþta
� 2tlut

MðtdisþtcþtaÞ 1þ ln Mtdis

2tlut

� �
¼ 0:896�

4:714þ5:298raveffiffi
2
p

M ð1þ ln 23:6M
124:2þ139:6raveffiffi

2
p Þ. h

By Property 1, Lemma 2, and Theorem 2, we have the following result.

Corollary 3. The average theoretical execution-time improvement ratio of our proposed TLRCD over the

previous RCD is about IC
T ¼ 0:815�

4:29þ4:821raveffiffi
2
p

M 1þ ln 23:6M
124:2þ139:6raveffiffi

2
p

� �
.

Given a 256� 256 image, from the definition of rave, we have rave ¼ 64. Putting rave ¼ 64 into Definition 8,
it yields the tuning condition m P 273. Let M ¼ 3000, we have the result.

Corollary 4. The average time improvement ratio of our proposed TLRCD over the previous RCD is 0.563.
4.3. Speed up the RHTE for detecting ellipses

In the RHTE [37] by McLaughlin, it selects three edge pixels each time to determine the candidate ellipse.
From the elliptic equation, an ellipse can be expressed by
f ðy � ycÞ
2 þ eðxl � xcÞðy � ycÞ þ dðxl � xcÞ2 ¼ 1; ð4Þ
where ðxc; ycÞ is the center of the ellipse; d, e, and f are the other three parameters satisfying d > 0, f > 0, and
4df � e2 > 0. Then the 5-tuple parameters ðxc; yc; d; e; f Þ can be converted to 5-tuple parameters ðxc; yc; a; b; hÞ
for h ¼ arctanð e

d�f Þ
2

, a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
d cos2 hþe sin h cos hþf sin2 h

q
, and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

f cos2 h�e sin h cos hþd sin2 h

q
[49], where h denotes the orienta-

tion angle of the ellipse and the two parameters a and b denote the half lengths of the two axes.
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We can use a simple measure to calculate the distance between the edge pixel and the candidate ellipse Exc;yc;a;b;h

to determine whether the candidate ellipse is a true ellipse or not. When a P b (b > a), we consider two cases: the
first case is that the possible ellipse orientation, i.e. h (hþ p=2), satisfies 0 6 h 6 p=4 (p=2 6 h 6 3p=4) and the
second case is that p=4 < h 6 p=2 (3p=4 6 h 6 p) is hold. For the first case, we use the vertical distance between
the edge pixel and the candidate ellipse to determine whether the candidate ellipse is a true ellipse. Given an edge
pixel vl ¼ ðxl; ylÞ, if the vertical line X ¼ xl passes through Exc ;yc ;a;b;h, then Eq. (4) has two solutions ðxl; y1Þ and
ðxl; y2Þ. Thus, the vertical distance between vl ¼ ðxl; ylÞ and the ellipse in Eq. (4) is equal to the minimum of
j yl � y1 j and j yl � y2 j. Therefore, the distance between Exc;yc;a;b;h and vl is calculated by
dl!ðxc ;yc;e;d;f Þ ¼ min yl �
�eðxl � xcÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½eðxl � xcÞ�2 � 4f ½dðxl � xcÞ2 � 1�

q
2f

� yc

������
������

8<
:

9=
;:
If dl!ðxc;yc;e;d;f Þ 6 M, vl is said to lie on Exc;yc;e;d;f .
By the same arguments in the first case, for the second case, we use the horizontal distance between the edge

pixel and the candidate ellipse to determine whether the candidate ellipse is a true ellipse. For saving the space
of context, we omit the similar discussion.

If ½eðx� xcÞ�2 � 4f ½dðxl � xcÞ2 � 1� < 0, the remaining operations for computing a are unnecessary to be
calculated. For different vl, the values of 2f ; 4f , and �e can be reused in Eq. (5) once they are calculated
in advance. From Eq. (5), the calculation of dl!ðxc;yc;e;d;f Þ needs nine additions, four multiplications, two square
operations, one division, one square-root operation, one absolute operation, and one comparison. We have
the following property.

Property 4. In the RHTE, for each edge pixel, the time required for calculating the distance dl!ðxc;yc;e;d;f Þ in
Eq. (5) is bounded by tdis ¼ 9ta þ 4tm þ 2ts þ td þ tr þ tc þ tabs where td denotes the time required to perform

one division.

We now consider time tlut required in the proposed TLRHTE. When a candidate Ellipse Exc;yc ;a;b;h has been
determined, based on Bresenham’s ellipse drawing method [47], the following procedure is used to draw the
banded candidate ellipse (BCE) on the LUT-based array.

Procedure BCE Drawing:

Step 1. Input the center ðxc; ycÞ, two axes a and b, and the orientation angle h of the candidate ellipse
Exc;yc;a;b;h. Set x ¼ 0, y ¼ b, a1 ¼ a2, b1 ¼ b2, a2 ¼ 2a1, and b2 ¼ 2b1. The position ð0; bÞ denotes the
first drawn point on Alut for the ellipse E0;0;a;b;0 where E0;0;a;b;0 denotes the ellipse obtained by shifting
the center of Exc;yc;a;b;h to coordinate (0,0) and rotating the orientation angle of Exc;yc;a;b;h to 0. The time
required in this step is 6tas þ 2tm þ 2ts.

Step 2. Let xa ¼ y sin hþ xc and ya ¼ �y cos hþ yc, then perform Alutðxa; yaÞ ¼ 1, Alutðxa; ya þ 1Þ ¼ 1,
Aðxa; ya � 1Þ ¼ 1, Alutðxa þ 1; yaÞ ¼ 1, Alutðxa � 1; yaÞ ¼ 1, Alutðxa þ 1; ya � 1Þ ¼ 1, Alutðxa � 1;
ya þ 1Þ ¼ 1, Alutðxa þ 1; ya þ 1Þ ¼ 1, and Alutðxa � 1; ya � 1Þ ¼ 1. Due to the symmetric property for
the four quadrants, the symmetric nine ellipse points can be obtained for each quadrant. The time
required in this step is 44tas þ 56ta þ 12tm.

Step 3. Initialize the decision parameter as p ¼ b1 � a1bþ 0:25a1 where the parameter p is used to determine
where the next ellipse point should be drawn. Let px ¼ 0 and py ¼ a2y. The time required in this step
is 3tas þ 2ta þ 3tm.

Step 4. If p < 0, the next ellipse point along the ellipse E0;0;a;b;0 is drawn at the position ðxþ 1; yÞ. In addition,
perform x ¼ xþ 1, px ¼ px þ b2, and p ¼ p þ b1 þ px; otherwise, the next point along the ellipse
E0;0;a;b;0 is ðxþ 1; y � 1Þ. Further, perform x ¼ xþ 1, y ¼ y � 1, px ¼ px þ b2, py ¼ py � a2 and
p ¼ p þ b1 þ px � py . This step requires at most 5tas þ 7ta þ tc time.

Step 5. Let xa ¼ x cos hþ y sin hþ xc and ya ¼ x sin hþ y cos hþ yc, then perform Alutðxa; yaÞ ¼ 1,
Alutðxa; ya þ 1Þ ¼ 1, Alutðxa; ya � 1Þ ¼ 1, Alutðxa þ 1; yaÞ ¼ 1, Alutðxa � 1; yaÞ ¼ 1, Alutðxa þ 1; ya � 1Þ ¼
1, Alutðxa � 1; ya þ 1Þ ¼ 1, Alutðxa þ 1; ya þ 1Þ ¼ 1, and Alutðxa � 1; ya � 1Þ ¼ 1. Due to the symmetric
property for the four quadrants, the symmetric nine points can be obtained for each quadrant. The
time required in this step is 44tas þ 56ta þ 12tm.
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Step 6. If px < py , then go to Step 4; otherwise, go to Step 7. This step only needs tc time.
Step 7. Initialize the decision parameter as p ¼ b1ðxþ 0:5Þ2 þ a1ðy � 1Þ2 � a1b1. The time required in this

step is tas þ 4ta þ 3tm þ 2ts.
Step 8. If p > 0, the next ellipse point along the ellipse E0;0;a;b;0 is drawn at position ðx; y � 1Þ. In addition,

perform y ¼ y � 1, py ¼ py � a2, and p ¼ p þ a1 � py ; otherwise, the next point along E0;0;a;b;0 is
ðxþ 1; y � 1Þ. Further, perform x ¼ xþ 1, y ¼ y � 1, px ¼ px þ b2, py ¼ py � a2, and p ¼
p þ a1 � py þ px. This step requires at most 5tas þ 7ta þ tc time.

Step 9. Let xa ¼ x cos hþ y sin hþ xc and ya ¼ x sin hþ y cos hþ yc, then perform Alutðxa; yaÞ ¼ 1,
Alutðxa; ya þ 1Þ ¼ 1, Alutðxa; ya � 1Þ ¼ 1, Alutðxa þ 1; yaÞ ¼ 1, Alutðxa � 1; yaÞ ¼ 1, Alutðxa þ 1; ya � 1Þ ¼
1, Alutðxa � 1; ya þ 1Þ ¼ 1, Alutðxa þ 1; ya þ 1Þ ¼ 1, and Alutðxa � 1; ya � 1Þ ¼ 1. Due to the symmetric
property for the four quadrants, the symmetric nine points can be obtained for each quadrant easily.
The time required in this step is 44tas þ 56ta þ 12tm.

Step 10. If y 6 0, then stop; otherwise, go to Step 8. This step only needs tc time.

Let aave ¼ minðW ;HÞ
4

denote the average half length of major axis of the candidate ellipse, then the time
required for performing the BCE Drawing procedure is shown below.

Lemma 5. Performing the BCE Drawing procedure on Alut needs tlut ¼ ð54þ 49aaveÞtas þ ð62þ 63aaveÞtaþ
ð20þ 12aaveÞtm þ 2aavetc þ 4ts time.

Proof. In the BCE Drawing procedure, since Steps 1, 2, 3, and 7 are only performed once, the time required in
the three steps is 54tas þ 62ta þ 20tm þ 4ts. Further, the two subsets of the remaining six steps, one consisting of
Step 4, Step 5, and Step 6 and the other consisting of Step 8, Step 9, and Step 10, are perform aave times. The
time required for performing each of these two subsets is ð49tas þ 63ta þ 12tm þ 2tcÞ. After running the two
subsets, it takes ð49tas þ 63ta þ 12tm þ 2tcÞaave time. Summing up all the time requirement, the total time
required in the BCE Drawing procedure on the LUT-based array Alut is tlut ¼ ð54þ 49aaveÞtasþ
ð62þ 63aaveÞta þ ð20þ 12aaveÞtm þ 2aavetc þ 4ts. h

From Property 4, the time required for the distance calculation in the RHTE is bounded by tdis ¼ 9taþ
4tm þ 2ts þ td þ tr þ tc þ tabs time. From Lemma 5, it is known that it takes tlut ¼ ð54þ 49aaveÞtasþ
ð62þ 63aaveÞta þ ð20þ 12aaveÞtm þ 2aavetc þ 4ts time to create the LUT-based voting platform for detection
ellipses. In our experiment, td is 23.8 ns by using the Pentium 4 computer with 1.8 GHz. From Property 4,
we have tdis ¼ 9ta þ 4tm þ 2ts þ td þ tr þ tc þ tabs ¼ 94:1 ns and from Lemma 5, we have tlut ¼ 254þ
230:4aave ns.

Following Definition 6, the tuning strategy in our proposed TLRHTE is shown below.

Definition 9 (Tuning strategy for ellipse detection). In our proposed TLRHTE, if m P 5:399þ 4:897aave holds,
our proposed LUT-based voting platform is used; otherwise, the voting process of the RHTE is used.

By using the above tuning strategy, we have the following result.

Theorem 3. The average voting-time improvement ratio of our proposed TLRHTE over the previous RHTE is

Iv ¼ 0:945� 5:1þ4:627aave

M 1þ ln 47:05M
254þ230:4aave

� �
.

Proof. From Lemma 1 and Definition 9, the average voting-time improvement ratio of our proposed
TLRHTE over the previous RHTE is Iv ¼ tdis

tdisþtcþta
� 2tlut

MðtdisþtcþtaÞ ð1þ ln Mtdis

2tlut
Þ ¼ 0:945�

5:1þ4:627aave

M ð1þ ln 47:05M
254þ230:4aave

Þ. h

By Property 1, Lemma 2, and Theorem 3, we have the following two results.

Corollary 5. The average theoretical execution-time improvement ratio of our proposed TLRHTE over the

previous RHTE is about IE
T ¼ 0:685� 3:698þ3:355aave

M 1þ ln 47:05M
254þ230:4aave

� �
.

Corollary 6. Putting aave ¼ 64 into Definition 9, it yields the tuning condition m P 319. Let M ¼ 3000, the aver-

age time improvement ratio of our proposed TLRHTE over the RHTE is 0.449.
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5. Experimental results

In this section, some experimental results are demonstrated to evaluate the performance of the concerning
algorithms. Since our proposed TLRHTL, TLRCD, and TLRHTE inherit the robustness of the previous
RHTL, RCD, and RHTE, respectively, we only evaluate the execution-time performance among them. In
addition, we also provide the comparison between our proposed TLCFRAs and the previous PAV-based algo-
rithms [44], such as the PRHTL, the PRCD, and the PRHTE, to emphasize the computation advantage of our
proposed LUT-based voting platform. All the experiments are implemented by using the Pentium 4 personal
computer with 1.8 GHz and the C programming language.

5.1. Experiments for line detection

Four 256 · 256 images (see Fig. 3) are taken to evaluate the execution-time performance between the
RHTL and our proposed TLRHTL. In our experiments, the Sobel edge detection is used to obtain the four
edge maps of Fig. 3. For the four testing images, after running our proposed TLRHTL, the resulting detected
lines are the same as the RHTL and are shown in Fig. 4. The execution-time comparison and execution-time
improvement ratios for the four testing images are shown in Table 1. The execution-time is measured in terms
of milliseconds. From Table 1, experimental results reveal that our proposed TLRHTL is faster than the pre-
vious RHTL for the four testing images and the average execution-time improvement ratio is 28.1%. From
Fig. 3. The four testing images: (a) the floor image, (b) the airport image, (c) the window image and (d) the road image.



Fig. 4. The detected lines of Fig. 3: (a) the floor image, (b) the airport image, (c) the window image and (d) the road image.

Table 1
Execution-time comparison for the RHTL, the PRHTL and the TLRHTL

Image

Floor Airport Window Road

RHTL 32 105 54 52
PRHTL 28 95 46 46
TLRHTL 24 75 39 36

TLRHTL�RHTL
RHTL 0.250 0.286 0.278 0.308

TLRHTL�PRHTL
PRHTL 0.143 0.211 0.152 0.217
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Corollary 2, it is known that the theoretical execution-time improvement ratio is 25.1% which nearly meets the
practical execution-time improvement ratio 28.1%. Table 1 also shows that our proposed TLRHTL has better
execution-time performance when compared to the previous PRHTL [44] and the average execution-time
improvement ratio is 18.1%.

5.2. Experiments for circle detection

Three 256 · 256 images and one 352 · 240 image (see Fig. 5) are used to evaluate the time performance
between the RCD and our proposed TLRCD. For the four testing images, after running our proposed



Fig. 5. The four testing images: (a) the coin image, (b) the cracker image, (c) the culvert image and (d) the sewage pipe image.

Fig. 6. The detected circles of Fig. 5: (a) the coin image, (b) the cracker image and (c) the culvert image and (d) the sewage pipe image.
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TLRCD, the detected circles are the same as the RCD and are illustrated in Fig. 6. The execution-time com-
parison and execution-time improvement ratios for the four testing images are shown in Table 2. The execu-
tion-time is still measured in terms of milliseconds. From Table 2, experimental results reveal that our
proposed TLRCD is faster than the previous RCD for the four testing images and the average execution-time
improvement ratio is 56.5%. From the Corollary 4, it is known that the theoretical execution-time improve-
Table 2
Execution-time comparison for the RCD, the PRCD, and the TLRCD

Image

Coin Cracker Culvert Sewage pipe

RCD 107 37 117 484
PPRCD 81 29 88 382
TLRCD 51 16 52 187

RCD�TLRCD
RCD 0.523 0.568 0.556 0.614

PRRCD�TLRCD
PRCD 0.370 0.448 0.409 0.510

Fig. 7. The two testing images: (a) the cookies image and (b) the eggs image.

Fig. 8. The detected ellipses of Fig. 7: (a) the cookies image and (b) the eggs image.



Table 3
Execution-time comparison for the RHTE, the PRHTE, and the TLRHTE

Image

Cookies Eggs

RHTE 53 221
PRHTE 41 170
TLRHTE 27 118

TLRHTE�RHTE
RHTE 0.491 0.466

TLRHTE�PRHTE
PRHTE 0.341 0.306
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ment ratio is 56.3% which nearly meets the practical execution-time improvement ratio 56.5%. From Table 2,
the execution-time performance of our proposed TLRCD is better than that of the PRCD [44] and the average
execution-time improvement ratio is 43.4%.

5.3. Experiments for ellipse detection

Two 256 · 256 images (see Fig. 7) are used to evaluate the time performance between the RHTE and our
proposed TLRHTE. For the two testing images, after running our proposed TLRHTE, the detected ellipses
are the same as the RHTE and are shown in Fig. 8. The execution-time improvement ratios for the two testing
images are shown in Table 3. From Table 3, experimental results reveal that our proposed TLRHTE is faster
than the previous RHTE for the two testing images and the average execution-time improvement ratio is
47.9%. From Corollary 6, it is known that the theoretical execution-time improvement ratio is 44.9% which
is close to the practical execution-time improvement ratio 47.9%. Table 3 also shows that our proposed
TLRHTE has 32.4% average execution-time improvement ratio when compared to the PRHTE [44].

6. Conclusion

We have presented the proposed LUT-based voting platform and tuning strategy. Plugging our two newly
proposed techniques into the previous three CFRAs, such as the RHTL, the RCD, and the RHTE, for detect-
ing lines, circles, and ellipses, respectively. Our proposed three improved randomized algorithms, namely the
TLRHTL, the TLRCD, and the TLRHTE, have also be presented. Moreover, we have provided the detailed
time complexity analysis for each proposed improved algorithm. Under the same robustness, experimental
results show that the execution-time improvement ratios of our proposed three TLCFRAs are about 28%,
56%, and 48% for detecting lines, circles, and ellipses, respectively, and these improvement ratios are vary close
to the theoretic analyses. Experimental results also show that our proposed three TLCFRAs have higher exe-
cution-time improvement ratios when compared to the PAV-based algorithms [44].

Acknowledgement

The authors would like to appreciate Dr. T.C. Chen for his valuable comments in Appendix 1.

Appendix 1. Proof for the estimated perimeter of ellipse

The parametric representation of the ellipse can be expressed by x ¼ a sin t and y ¼ b cos t. We consider the
first case when a P b. By differentiating the above two parametric equations, we have dx ¼ acos t dt and
dy ¼ �b sin t dt. Let ds2 ¼ dx2 þ dy2, then it yields
ds2 ¼ ða2 cos2 t þ b2 sin2 tÞdt2 ¼ ½a2ð1� sin2 tÞ þ b2 sin2 t�dt2 ¼ ½a2 � ða2 � b2Þ sin2 t�dt2
and we have ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ða2 � b2Þ sin2 t

q
dt ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2�b2

a2 sin2 t
q

dt.

Let x ¼
ffiffiffiffiffiffiffiffiffi
a2�b2
p

a ð6 1Þ, then we have ds ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2 sin2 t

p
dt. Thus, the perimeter of the ellipse, s, can be

obtained by calculating
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s ¼ 4

Z p
2

0

ds ¼ 4a
Z p

2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2 sin2 t

p
dt:
From
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2 sin2 t

p
¼ 1� 1

2
x2 sin2 t � 1

2�4
x4 sin4 t � � � �, we further have
s ¼ 4a
p
2
� x2

2

Z p
2

0

sin2 t dt � x4

2� 4

Z p
2

0

sin4 t dt � � � �
� 	

:

Because of
R p

2
0

sin2n t dt ¼ 1�3�5���ð2n�1Þ
2�4�6���2n � p

2
, we thus have s ¼ 2ap½1� ð1

2
Þ2x2 � ð1�3

2�4
Þ2 x4

3
� ð1�3�5

2�4�6
Þ2 x6

5
� � ��. Since

each term after the second term in the bracket is rather small, the perimeter of the ellipse is approximated
by s ¼ 2ap½1� ð1

2
Þ2x2�.

By the same arguments, for the second case when a < b, the perimeter of the ellipse can be approximated by

s ¼ 2bp½1� ð1
2
Þ2y2� where y ¼

ffiffiffiffiffiffiffiffiffi
b2�a2
p

b . Combining the results for the two cases, let L ¼ maxða; bÞ and

L ¼ minða; bÞ, then the perimeter of the ellipse can be estimated by the formula s ¼ 2pL� pðLþSÞðL�SÞ
2L . h
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