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a b s t r a c t

The recently published edge- and lookup table-based inverse halftoning (ELIH) algorithm
has shown its quality and superiority when compared with the previous lookup table-
based IH algorithm. This paper presents a new finite state machine model (FSMM)-based
search method to speed up the existing ELIH algorithm significantly while preserving
the same image quality as in the ELIH algorithm. From the observation that the sliding
window for the ELIH algorithm moves from left to right one position; there are therefore
one output column and one input column which are introduced at each step and thus a
simple finite state machine can track the transitions from the current window movement
to the next. This is faster than a full search in the lookup table. Under thirty typical
testing images adopted from Meşe’s website, experimental results demonstrated that the
proposed FSMM-based ELIH algorithm has an improvement in execution time of 20% to
80%, with a typical improvement of 50%, when compared to the ELIH algorithm.

© 2009 Published by Elsevier Ltd

1. Introduction

Halftoning is a process which transforms gray images into halftone images [1]. It has been widely used in publishing
applications, such as newspapers, books, magazines, etc. Halftone images are hard to manipulate. Many image operations,
such as scaling, compression, and enhancement can cause severe image degradation [2]. To enable these operations, gray
images need to be reconstructed from the halftone images through inverse halftoning (IH).
Since there is no way to reconstruct a perfect gray image from the given halftone image, many efficient IH algorithms [2–

6] have been developed to improve the quality of the reconstructed image. Based on the lookup table (LUT) approach, three
efficient IH algorithms [7–9] have been presented. Among these developed LUT-based IH (LIH) algorithms, Chang et al.
[7] presented a hybrid IH algorithm which combines the LUT approach and a filtering technique. Meanwhile, Meşe and
Vaidyanathan [8] independently presented the same LUT approach for IH. Recently, Chung andWu [10] presented an edge-
based LIH (ELIH) algorithm which has better image quality although the ELIH algorithm needs more memory requirement
and search-time load when compared to the LIH algorithm.
Based on the recently published ELIH algorithmmentioned above, this paper presents a new finite state machine model

(FSMM)-based searchmethod to speed up the ELIH algorithm significantlywhile preserving the same image quality as in the
ELIH algorithm. Our proposed FSMM-based ELIH (FELIH) method first analyzes the correlation between two edge patterns
in the thirty nine edge patterns used in the existing ELIH and then, a two-level FSMM is constructed. According to the row-
major scanning order on halftone images in the IH process, the constructed two-level FSMM can help the current scanned
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Fig. 1. A 4× 4 template T .

binary pattern and the associated edge pattern to find the corresponding constructed gray value in the edge-based LUT
(ELUT) efficiently. In fact, the proposed FSMM-based search scheme also can be used to speed up the construction of ELUT.
When compared to the full search technique used in the previous ELIH, the proposed FELIH can narrow the search space
efficiently for each search in average and it leads to a good computation-saving effect for reconstructing the gray image from
the input halftone.
The remainder of this paper is organized as follows. In Section 2, the currently published ELIH algorithm is surveyed.

In Section 3, the proposed FELIH algorithm is presented. In Section 4 the execution-time improvement of the proposed
algorithm is demonstrated. In Section 5, some concluding remarks are addressed.

2. The past work: ELIH

In this section, we first survey the recently published ELIH algorithm and then point out the time-consuming problem
existing in the ELIH.
Fig. 1 illustrates a 4 × 4 template T with symbol X which is used as a sliding window to build up the ELUT. Given a

set of thirty testing halftone images from Meşés website, first we run one of the existing IH algorithms [7–9] on the testing
halftone images to obtain the base gray images, i.e. the inverse halftoned image. These testing halftone images are also called
the training halftone images since they will be used to construct the ELUT for the ELIH algorithm. Then, we run the Canny
edge detector [11] on the base gray images to obtain the edge maps.
From the edgemap, each 4×4 subedgemap covered by the 4×4 template T is examined and then is classified into one of

the four regular edge types or the irregular edge type. As shown in Fig. 2, the four regular edge types contain the horizontal
edge type (see the twelve horizontal edge patterns as shown in Fig. 2(a)), the vertical edge type (see the twelve vertical edge
patterns as shown in Fig. 2(b)), the diagonal edge type (see the six diagonal edge patterns as shown in Fig. 2(c)), and the
corner edge type (see the four corner edge patterns as shown in Fig. 2(d)). The irregular edge type is partitioned into five
groups, group-1 with index 34 containing the edge pattern without any edge pixels; group-2 denoted by index 35, group-3
by index 36, group-4 by index 37, and group-5 by index 38 containing edge patterns with 1–4, 5–8, 9–12, and 13–16 random
edge pixels, respectively.
After introducing how to classify the edge types from the training edge maps, we now introduce the address mapping

scheme in the ELIH algorithm. Based on the current training halftone image and the raster scan order, the input 4×4 binary
pattern Sh denotes the 4 × 4 halftone covered by the template T . The sixteen binary values of Sh are denoted by Sh0 , S

h
1 , . . . ,

Sh14, and S
h
15. As the first key, S

h is encoded by

I =
15∑
k=0

2kShk . (1)

Using the 4 × 4 subedge map corresponding to the input 4 × 4 halftone as the second key, the index J can be obtained by
searching the matched edge pattern in four regular edge types and the irregular edge type. For each input 4 × 4 halftone,
the index pair (I, J) is used in the address mapping. Then, the lookup table ELUT is updated by the following assignments:

N[I, J] = N[I, J] + 1

ELUT [I, J] = ELUT [I, J] + Sg10
(2)

where the array N[I, J] is used as a counter and Sg10 denotes the T -mapped gray value of S
g pointed by symbol X in Fig. 1;

here Sg denotes the corresponding 4 × 4 base gray subimage. Using the template T as the sliding window, we update the
counter N[∗, ∗] (see Eq. (2)) and the array ELUT [∗, ∗] iteratively once moving T one position from left to right. Finally, we
have

ELUT [I, J] =
ELUT [I, J]
N[I, J]

. (3)

After introducing the construction of the 2-D array ELUT [∗, ∗] used in the previous ELIH algorithm,we observe that although
the value of index I can be calculated by several arithmetic operations (see Eq. (1)), it still needs to compare the current 4×4
subedge map to each edge pattern from the regular edge pattern with index 0 to the irregular edge pattern with index 38
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Fig. 2. Four regular edge types in the ELIH algorithm. (a) Horizontal edge type: twelve horizontal edge patterns. (b) Vertical edge type: twelve vertical
edge patterns. (c) Diagonal edge type: six diagonal edge patterns. (d) Corner edge type: four corner edge patterns.

in a full search manner, and then the index of the matched edge pattern is assigned to be the value of J . Experimental data
illustrates that the ratio of the execution-time required in determining the first key I over that in determining the second
key J is 0.872%, so in our study, we ignore the time requirement for the first key and we only focus on the second key.
Unfortunately, in order to obtain the second key J , the full search approach used in the ELIH needs thirty eight

comparisons in the worst case to compare the 4× 4 subedge map with the thirty eight edge patterns. For each comparison,
it takes sixteen bit-comparison operations. For obtaining the value of J for each scanned 4 × 4 subedge map, in total it
takes 608 (=16 × 38) bit-comparison operations. On the other hand, for each 4 × 4 subedge map, it takes a large amount
of time to find the matched edge pattern among the thirty nine edge patterns. Besides this time-consuming problem, the
reconstruction of a gray image via the ELUT has the same time-consuming search problem.
In the LIH algorithm, thememory required for the LUT is 64 K bytes. The ELUT has 39 edge types for each binary pattern; it,

therefore, needs 2496 K (39×64 K) bytes. If we simply store a 64 K-byte lookup tablemapping the 16-bit value of every 4×4
edge map to its J-value; although the J-value of each dot position could be computed in constant time, it needs 216 × 64 K
bytes in total and is not so practical.

3. The proposed FSMM-based inverse halftoning algorithm

Instead of using the full search approach mentioned above, this section presents the proposed FSMM-based search
scheme to reduce the search time in the construction of ELUT and the reconstruction of a gray image.
As shown in Fig. 3(a), suppose the reference 4× 4 subedge map is denoted by the symbol Sr ; the current 4× 4 subedge

map is denoted by Sc , and the new input 4 × 1 column vector is denoted by V c . The size of the overlapping subedge map
between Sr and Sc is 4× 3. Given the current 4× 4 subedge map, our main task is to find the matched edge pattern in the
set of thirty nine edge patterns. Since we have known the J-value of the reference 4× 4 subedge map Sr , the purpose of the
constructed FSMM can help us to find the J-value of the current 4×4 subedgemap Sc efficiently. Our main idea is that upon
knowing the J-value of Sr , e.g. 15, if the column vector V c is an empty vector, (0, 0, 0, 0)t, it is easy to know the J-value of Sc ,
i.e. 14. Throughout this paper, a 4× 1 column vector V c is denoted by V c = (b1, b2, b3, b4)t, where bi = 0(=1) denotes the
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Fig. 3. Two examples for reference subedge map Sr and current subedge map Sc . (a) Reference subedge map Sr with J-value 15 and current subedge map
Sc with J-value 14. (b) Reference subedge map Sr with J-value 26 and current subedge map Sc with J-value 24.

Fig. 4. The set of eight feasible column vectors, VF .

a

b

Fig. 5. Two transitions for Fig. 3. (a) Transition for Fig. 3(a). (b) Transition for Fig. 3(b).

black (white) pixel of V c . By the same argument, upon knowing the J-value of Sr , e.g. 26 (see Fig. 3(b)), if the column vector
V c is equal to (0, 0, 0, 1)t, the J-value of Sc is 24. Given an input column vector V c , the transition from [13] the J-value of
the reference 4× 4 subedge map Sr to the J-value of the current 4× 4 subedge map Sr can be realized by the constructed
FSMM. In what follows, the construction of our proposed FSMMwill be presented.
For exposition, we now define the frequently used eight column vectors and they are useful to speed up the search time

for determining the J-value of the current 4×4 subedge map. As shown in Fig. 4, the eight 4×1 column vectors are defined
by a = (1, 0, 0, 0)t, b = (0, 1, 0, 0)t, c = (0, 0, 1, 0)t, d = (0, 0, 0, 1)t, e = (0, 0, 0, 0)t, f = (1, 1, 1, 1)t, g = (1, 1, 1, 0)t,
and h = (0, 1, 1, 1)t where the symbol ‘t’ denotes the transpose operation. For convenience, these eight column vectors
are called feasible column vectors and they are represented by the set VF = {a, b, c, d, e, f , g, h}. Since the total number of
all possible column vectors is 16 (=24), the ratio of the number of feasible column vectors over that of all possible column
vectors is 1/2(=8/16). Let V denote the set of all possible column vectors, then the set VIF = V \ VF denotes the set of eight
infeasible column vectors.
After describing the definitions of VF and VIF , Fig. 5(a), (b) depict the corresponding two transitions where Sri (S

c
j ) denotes

the state of reference (current) subedgemapwith J-value i(j). For the example in Fig. 5(a), the state Sr15 denotes the reference
subedge map with J-value 15; after reading the column vector e = (0, 0, 0, 0)t, the transition tells us that the new state
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Table 1
The transition function and output function of HFSM.

ŚH IH
a b c d e V \ {a, e} V \ {b, e} V \ {c, e} V \ {d, e} V

S0 S0 , 0 S4 , 0 Sstop , 1
S1 S1 , 0 S5 , 0 Sstop , 1
S2 S2 , 0 S6 , 0 Sstop , 1
S3 S3 , 0 S7 , 0 Sstop , 1
S4 Sstop , 1
S5 Sstop , 1
S6 Sstop , 1
S7 Sstop , 1
S8 S0 , 0 S4 , 0 Sstop , 1
S9 S1 , 0 S5 , 0 Sstop , 1
S10 S2 , 0 S6 , 0 Sstop , 1
S11 S3 , 0 S7 , 0 Sstop , 1

for the current subedge map will be Sc14 and can be determined in constant time. Following the transition notation used in
the FSMM, the two transitions in Fig. 5(a), (b) can be given by fs:Sr15 × e→ Sc14 and fs:S

r
26 × d→ Sc24, respectively. Without

confusion, for convenience, the above two transitions are denoted by fs : S15 × e → S14 and fs:S26 × d → S24. From finite
state machine notations, S15, S14, S26, and S24 are four states where the state Si denotes the subedge map with J-value i.
In fact, among the four regular edge types mentioned in Fig. 2, only the 4 × 4 reference subedge map, which belongs to
the horizonal edge type, the vertical edge type, or the diagonal edge type, associated with an input column vector could
determine the J-value of the 4×4 current subedgemap fast. According to the example of the above two transitions in Fig. 5,
our FSMM consists of three different FSMMs, namely the horizontal FSM (HFSM), the vertical FSM (VFSM), and the diagonal
FSM (DFSM). The three different kinds of FSMMs will be defined formally in what follows.
Before defining the HFSM, let us first discuss how to group the suitable edge types as the state set used in the HFSM.

From Fig. 2(a), the twelve states S0, S1, . . . , and S11 corresponding to the twelve horizontal edge patterns can be grouped
into a state set in the HFSM. In addition, let Sstop denote the final state in the HFSM and this special state tells us that the
next 4 × 4 subedge map does not belong to the horizontal edge type. That is, when the state comes to Sstop, the HFSM will
be terminated temporarily and the full search is alarmed and performed for the next 4× 4 subedge map. From Fig. 2(a), we
observe that when the reference subedge map belongs to the horizontal edge type, the current subedge map still belongs to
the same edge type if the input 4× 1 column vector contains only one black pixel or no black pixels. For example, suppose
that 4 × 4 subedge map is S0 and the new input column vector is e, then it indicates that the next 4 × 4 subedge map S4
belongs to horizontal edge type; suppose the 4×4 subedgemap is S0 and the new input column vector is a, then it indicates
that the next 4×4 subedgemap S0 also belongs to a horizontal edge type. Generally speaking, assume the reference subedge
map belongs to the horizontal edge type, and when the input column vector is equal to a, b, c , d, or e (see Fig. 4), the next
state may be one of S0, S1, . . ., and S11; otherwise, the next state is Sstop since the next subedge map does not belong to the
horizontal edge type. The definition of HFSM is given below.

Definition 1. Finite State Machine for Horizonal Edge Type (HFSM): The HFSM MH is represented by MH = (SH , IH ,OH ,
fHs , fHo) where the state set SH is denoted by SH = {S0, S1, . . . , S11}

⋃
{Sstop} = ŚH

⋃
{Sstop} = {S0, S1, . . . , S11, Sstop}; the

input column vector set IH is denoted by IH = V = {(b1, b2, b3, b4)t|bi = 1 or bi = 0, 1 ≤ i ≤ 4}; the output set
OH is denoted by OH = {0, 1}; the transition function fHs and the output function fHo for MH are defined by Table 1 where
fHs : ŚH×IH → ŚH

⋃
{Sstop} and fHo : ŚH×IH → OH . The state diagramof theHFSM is shown in Fig. 6which is equal to Table 1.

By Table 1 or Fig. 6, given the current state and the input column vector, the next state and the output can be determined.
For example, given the state S8 and the input column vector a, by Table 1, the next state and the output are S0 and 0,
respectively. As shown in Fig. 7, a small example is given to explain how the HFSM works. The first 4 × 4 subedge map
is S8, i.e. the initial state is S8, and the new input 4× 1 column vector is a. According to the state diagram of HFSM, from S8
and a, we can determine the next state to be S0 and the output to be 0. Next, based on the state S0 and the input vector e, the
HFSM tells us that the next state is S4 and the output is 0. As shown in Fig. 7, the final input vector is b, the transition function
transfers the state S4 to Sstop and the output function gives the output 1. At thismoment, the state Sstop stops the functionality
of the HFSM and then we call the full search procedure to compute the J-value of the current 4× 4 subedge map.
After explaining how the HFSMworks, we continue discussing how to group the suitable edge types as the state set used

in the FSM for the vertical edge type (VFSM). From Fig. 2(b), the twelve states S12, S13, . . . , and S23 corresponding to the
twelve vertical edge patterns can be grouped into the state set in the VFSM. Similarly, the state Sstop defined in the HFSM
denotes the final state in the VFSM, but this special state tells us that the next 4 × 4 subedge map does not belong to the
vertical edge type. From Fig. 2(b), we observe that when the reference subedge map belongs to the vertical edge type, the
current subedge map still belongs to the same edge type if more than three continuous elements of the input 4× 1 column
vector are black pixels. For example, suppose the reference 4× 4 subedge map is S12 and the new input column vector f has
four continuous black pixels, we can find that the next 4× 4 subedge map S15 also belongs to vertical edge type. Generally
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Fig. 6. The state diagram of HFSM.

Fig. 7. A small example to explain how the HFSM works.

speaking, assume the reference subedge map belongs to the vertical edge type, if the input column vector is equal to f , g , h,
or e (see Fig. 4), the next state may be one of S12, S13, . . . , and S23; otherwise, the next state is Sstop.
Let us further examine the transition relations between the state S34, which denotes a white 4×4 subedge map, and any

state of S12, S16, and S20. We thus have the following transition functions and output functions: fs:S12×e→ S34; fo:S12×e→
0, fs : S16 × e → S34; fo:S16 × e → 0, fs:S20 × e → S34; fo:S20 × e → 0, fs:S34 × f → S15; fo:S34 × f → 0, fs:S34 × g →
S19; fo:S34 × g → 0, fs:S34 × h→ S23; fo:S34 × h→ 0, fs:S34 × e→ S34; fo:S34 × e→ 0, fs:S34 × (V \ {e, f , g, h})→ Sstop;
fo:S34 × (V \ {e, f , g, h}) → 1. From the thirty obtained edge maps as shown in Fig. 18, it is observed that for an edge
map, white 4× 4 subedge maps occupy a large portion of that edge map. Besides the transitions between any two vertical
edge patterns in Fig. 2(b), the above eight transition functions and eight output functions can also speed up the J-value
determination efficiently. The definition of VFSM is given below.

Definition 2. Finite state machine for vertical edge type (VFSM): The VFSMMV is represented byMV = (SV , IV ,OV , fVs , fVo)
where the state set SV is denoted by SV = {S12, S13, . . . , S23, S34}

⋃
{Sstop} = ŚV

⋃
{Sstop} = {S12, S13, . . . , S23, S34, Sstop};

the set of input column vectors IV is denoted by IV = V = {(b1, b2, b3, b4)t|bi = 1 or bi = 0, 1 ≤ i ≤ 4}; the output set
OV is denoted by OV = {0, 1}; the transition function fVs and the output function fVo for MV are defined by Table 2 where
fVs :ŚV × IV → ŚV

⋃
{Sstop} and fVo :ŚV × IV → OV . The state diagram of the VFSM is shown in Fig. 8.

As shown in Fig. 9, a small example is still given to explain how the VFSM works. Given the first 4×4 subedge map S12
and the new input column vector f , it yields the next state S15 and the output 0. Based on the state S15 and the input vector
e, the VFSM yields the next state S14 and the output 0.
Finally, the six states S24, S25, . . . , and S29 corresponding to the six diagonal edge patterns (see Fig. 2(c)) are grouped into

the state set in the DFSM. The state Sstop is the same as in the VFSM. From Fig. 2(c), we observe that when the reference
subedge map belongs to the diagonal edge type, the current subedge map still belongs to the same edge type if only the
first or last element of the input column vector is the black pixel or the four elements of the input column vector are white
pixels. For example, suppose that the reference 4× 4 subedge map is S29 and new input column vector is a, we find that the
next 4 × 4 subedge map S25 also belongs to diagonal edge type; suppose the reference 4 × 4 subedge map is S24 the new
input column vector is e, we can find that the next 4× 4 subedge map S28 also belongs to diagonal edge type. In summary,
assume the reference subedge map belongs to the diagonal edge type, when the input column vector is equal to a, d, or e
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Table 2
The transition function and output function of VFSM.

ŚV IH
f g h e V \ {f , e} V \ {g, e} V \ {h, e} V \ {e} V \{e, f , g, h}

S12 S15 , 0 S34 , 0 Sstop , 1
S13 S12 , 0 Sstop , 1
S14 S13 , 0 Sstop , 1
S15 S14 , 0 Sstop , 1
S16 S19 , 0 S34 , 0 Sstop , 1
S17 S16 , 0 Sstop , 1
S18 S17 , 0 Sstop , 1
S19 S18 , 0 Sstop , 1
S20 S23 , 0 S34 , 0 Sstop , 1
S21 S20 , 0 Sstop , 1
S22 S21 , 0 Sstop , 1
S23 S22 , 0 Sstop , 1
S34 S15 , 0 S19 , 0 S23 , 0 S34 , 0 Sstop , 1
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Fig. 8. The state diagram of VFSM.

Fig. 9. A small example to explain how the VFSM works.

(see Fig. 4), the next state may be the one of S24, S25, . . . , and S29; otherwise, the next state is Sstop. The definition of DFSM is
given below.

Definition 3. Finite state machine for diagonal edge type (DFSM): The DFSM MD is represented by MD = (SD, ID,OD, fDs , fDo)
where the state set SD is denoted by SD = {S24, S25, . . . , S29}

⋃
{Sstop} = ŚD

⋃
{Sstop} = {S24, S25, . . . , S29, Sstop}; the set

of input column vectors ID is denoted by ID = V = {(b1, b2, b3, b4)t|bi = 1 or bi = 0, 1 ≤ i ≤ 4}; the output set OD
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Table 3
The transition function and output function of DFSM.

ŚD IH
a d e V \ {a} V \ {d} V \ {e} V

S24 S28 , 0 Sstop , 1
S25 S27 , 0 Sstop , 1
S26 S24 , 0 Sstop , 1
S27 Sstop , 1
S28 Sstop , 1
S29 S25 , 0 Sstop , 1

Fig. 10. The state diagram of DFSM.

Fig. 11. A small example to explain how the DFSM works.

is denoted by OD = {0, 1}; the transition function fDs and the output function fDo for MD are defined by Table 3 where
fDs : ŚD × ID → ŚD

⋃
{Sstop} and fDo : ŚD × ID → OD. The state diagram of the DFSM is shown in Fig. 10.

As shown in Fig. 11, the first 4×4 subedgemap is S26 and the new input column vector is d. From S26 and d, the next state
is S24 and the output is 0. The final input vector is an infeasible vector which belongs to V \ {e}, so the transition function
transfers the state S24 to Sstop and the output function gives the output 1. We thus stop the functionality of the DFSM and
then call the full search procedure to compute the J-value of the current 4× 4 subedge map.
Based on Definitions 1–3, our FSMM consists of the HFSM, the VFSM, and the DFSM. As shown in Fig. 12, we combine the

above three examples (see Fig. 7, Fig. 9, and Fig. 11) to explain how our proposed whole FSMM works. Since each time the
4×4 template T is moved one position from left to right in Fig. 12, there are sixteen different 4×4 subedge maps as shown
in Fig. 13 that can be scanned. Fig. 14 shows our proposed whole FSMM and Table 4 illustrates the detailed simulation for
Fig. 12.
The main contribution of this paper is that in our proposed FSMM, suppose the J-value of reference 4×4 subedgemap is

within the interval [0..29], when the new input 4×1 column vector belongs to the feasible column vectors VF (see Fig. 4), the
proposed FSMM can determine the J-value of next 4× 4 subedge map in constant time, and it leads to a good computation-
saving effect. In next section, some experimental results are used to demonstrate the good execution-time improvement of
our proposed FELIH.
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Fig. 12. An example to explain how our proposed whole FSMMworks.

a b c d e f g h

i j k l m n o p

Fig. 13. Sixteen different 4× 4 subedge maps for Fig. 12.

Table 4
The simulation of our proposed FSMM for Fig. 12.

Step Operation Current state Input column vector Next state Output J-value 4× 4 template

1 Full search 8 Fig. 13(a)
2 HFSM S8 a S0 0 0 Fig. 13(b)
3 HFSM S0 e S4 0 4 Fig. 13(c)
4 HFSM S4 b
5 Full search 35 Fig. 13(d)
6 Read next column vector
7 Full search 36 Fig. 13(e)
8 Read next column vector
9 Full search 36 Fig. 13(f)
10 Read next column vector
11 Full search 36 Fig. 13(g)
12 Read next column vector
13 Full search 12 Fig. 13(h)
14 VFSM S12 f S15 0 15 Fig. 13(i)
15 VFSM S15 e S14 0 14 Fig. 13(j)
16 VFSM S14 e S13 0 13 Fig. 13(k)
17 VFSM S13 a Sstop 1
18 Full search 36 Fig. 13(l)
19 Read next column vector
20 Full search 35 Fig. 13(m)
21 Read next column vector
22 Full search 26 Fig. 13(n)
23 DFSM S26 d S24 0 24 Fig. 13(o)
24 DFSM S24 b Sstop 1
25 Full search 35 Fig. 13(p)

4. Experimental results

In this section, some experimental results are demonstrated to justify the execution-time improvement of our proposed
FELIH when compared to the previous ELIH. All the experiments are implemented by using a Pentium 4 personal computer
with 2.6 GHz and 512 MB RAM. The operating system used is MS-Windows XP and the program developing environment is
Borland C++ builder 6.0.
In our experiments, the thirty test 768 × 512 gray images are adopted from Meşe’s website [12]. For simplicity, we

only choose three typical images, say the fifth gray image for the worst execution-time improvement, the ninth gray image
for middle execution-time improvement, and the twenty-sixth gray image for the best execution-time improvement. The
three typical test images are illustrated in Fig. 15. Fig. 16 shows the halftone images generated by running error diffusion
process with Floyd–Steinberg kernel on Fig. 15. After applying the LIH in [7,8] to these halftone images, the base gray images
are shown in Fig. 17 and the corresponding edge maps are illustrated in Fig. 18 by running Canny edge detector on these
base gray images. Fig. 19 shows the positions where the dot symbol ‘·’ denotes the kernel-mapped pixel of the current
4 × 4 edge map whose J-value can be determined in constant time by the proposed FSMM. For the three edge maps in
Fig. 19, in average, the ratio of the number of dots in one edge map over the size of the edge map, i.e. 768 × 512, is about
60%. The execution-time comparison and execution-time improvement ratios for the thirty testing images are shown in
Table 5 where execution-time is measured in terms of seconds. From Table 5, experimental results indicate that for each
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Fig. 14. Our proposed whole FSMM.

edge map, the average execution-time for determining the J-values by using our proposed FELIH (the ELIH) is 1.277 (2.742)
seconds and our proposed FELIH is faster than the previous ELIH; the average execution-time improvement ratio is about
50% (∼= 2.742−1.2772.742 × 100%). Note that if the VFSM does not include the consideration of S34 for the white 4× 4 subedge map,
the average execution-time improvement ratio is only 22%.

5. Conclusion

Based on the finite state machine model (FSMM) approach, we have presented a faster FSMM-based IH, called the FELIH,
to speed up the currently published ELIH algorithm significantly. Our proposed two-level FSMM consists of three kinds of
finite state machine (FSM), the HFSM, the VFSM, and the DFSM, and each of them can help us to determine the J-value of
the current 4 × 4 subedge map efficiently. Under thirty different testing images, experimental results have demonstrated
that our proposed FELIH has about 50% execution-time improvement ratio on average when compared to the previous ELIH
algorithm.
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(a) The fifth gray image. (b) The ninth gray image.

(c) The twenty-sixth gray image.

Fig. 15. Three typical testing gray images.

(a) The fifth halftone image. (b) The ninth halftone image.

(c) The twenty-sixth halftone image.

Fig. 16. The halftone images generated by running error diffusion process with Floyd–Steinberg kernel on Fig. 15.
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(a) The fifth base gray image. (b) The ninth base gray image.

(c) The twenty-sixth base gray image.

Fig. 17. Three typical base gray images.

(a) The fifth edge map. (b) The ninth edge map.

(c) The twenty-sixth edge map.

Fig. 18. Three typical edge maps obtained by Canny edge detector.
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(a) Black dot positions for the fifth image. (b) Black dot positions for the ninth image.

(c) Black dot positions for the twenty-sixth image.

Fig. 19. The black dot positions that those J-values can be determined in constant time by using our proposed FSMM-based approach.

Table 5
Execution-time improvement ratios between the ELIH and the FELIH.

Image TELIH (s) TFELIH (s)

Image 1 2.9 1.8
Image 2 2.9 1.7
Image 3 2.8 1.3
Image 4 2.6 1.0
Image 5 3.1 2.3
Image 6 2.7 1.1
Image 7 2.9 1.6
Image 8 2.6 0.9
Image 9 2.7 1.3
Image 10 2.4 0.6
Image 11 2.7 1.4
Image 12 2.8 1.3
Image 13 2.5 0.7
Image 14 2.9 1.6
Image 15 2.7 1.1
Image 16 2.6 0.9
Image 17 2.8 1.4
Image 18 2.7 1.1
Image 19 2.9 1.6
Image 20 2.6 0.9
Image 21 2.8 1.6
Image 22 2.6 1.0
Image 23 2.4 0.5
Image 24 2.8 1.3
Image 25 3.1 2.3
Image 26 2.4 0.4
Image 27 2.7 1.2
Image 28 2.8 1.3
Image 29 2.6 0.9
Image 30 3.1 2.2

Average 2.7 1.3
TELIH−TFELIH
TELIH

52%
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