
1258 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 5, MAY 2007

Texture- and Multiple-Template-Based Algorithm for
Lossless Compression of Error-Diffused Images

Yong–Huai Huang and Kuo–Liang Chung, Senior Member, IEEE

Abstract—Recently, several efficient context-based arithmetic
coding algorithms have been developed successfully for lossless
compression of error-diffused images. In this paper, we first
present a novel block- and texture-based approach to train the
multiple-template according to the most representative texture
features. Based on the trained multiple template, we next present
an efficient texture- and multiple-template-based (TM-based)
algorithm for lossless compression of error-diffused images. In
our proposed TM-based algorithm, the input image is divided into
many blocks and for each block, the best template is adaptively
selected from the multiple-template based on the texture feature
of that block. Under 20 testing error-diffused images and the
personal computer with Intel Celeron 2.8-GHz CPU, experimental
results demonstrate that with a little encoding time degradation,
0.365 s (0.901 s) on average, the compression improvement ratio
of our proposed TM-based algorithm over the joint bilevel image
group (JBIG) standard [over the previous block arithmetic coding
for image compression (BACIC) algorithm proposed by Reavy
and Boncelet is 24%] (19.4%). Under the same condition, the
compression improvement ratio of our proposed algorithm over
the previous algorithm by Lee and Park is 17.6% and still only
has a little encoding time degradation (0.775 s on average). In ad-
dition, the encoding time required in the previous free tree-based
algorithm is 109.131 s on average while our proposed algorithm
takes 0.995 s; the average compression ratio of our proposed
TM-based algorithm, 1.60, is quite competitive to that of the free
tree-based algorithm, 1.62.

Index Terms—Arithmetic coding, context, error-diffused im-
ages, lossless compression, multiple-template, texture.

I. INTRODUCTION

FOR facsimile transmission, bilevel image compression is
a useful technique to compress the faxed document and,

thus, can reduce the transmission time and the memory require-
ment. In the 1980s, two international standards, T.4 [1] and
T.6 [2], were developed for facsimile coding. T.4 and T.6 used
a modified Huffman table to encode the run length of black
or white pixels. In 1996, three more efficient lossless bilevel
image compression algorithms [3]–[5] were presented. Based
on exclusive-or operations for two horizontally adjacent pixels,
Robertson [3] presented an efficient algorithm to improve the
compression performance. Swanson et al. [4] removed the spa-
tial redundancy by using the wavelet transform. Gurcan et al. [5]

Manuscript received April 21, 206; revised December 15, 2006. This work
was supported by the National Council of Science of Taiwan, R.O.C., under
Contract NSC94-2213-E-011-041. The associate editor coordinating the review
of this manuscript and approving it for publication was Prof. Bruno Carpintieri.

The authors are with the Department of Computer Science and Information
Engineering, National Taiwan University of Science and Technology, Taipei,
Taiwan 10672, R.O.C. (e-mail: klchung@csie.ntust.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2007.894227

utilized the multiresolution property of wavelet subbands to re-
duce the bit requirement for compression. Except error-diffused
images, i.e., halftone images, the above five previous compres-
sion algorithms work well for bilevel images. Since there are a
lot of transitions between black and white pixels in error-dif-
fused images, neither the runlength-based coding approach nor
the wavelet transform-based coding approach can work well for
error-diffused images.

A series of context algorithms [6]–[8] proposed by Rissanen
and Langdon is an efficient technique for data compression. Ac-
cording to context-based concept, several efficient algorithms
for compressing error-diffused images have been presented
[9]–[14]. Among these developed algorithms using arithmetic
coding, the joint bilevel image group (JBIG) [9] is the most
well-known. According to a ten-pixel template, the JBIG
generates 1024 different contexts and each context is corre-
sponding to a probability model to encode the pixels with the
same context. Experimental results show that for error-diffused
images, the JBIG has higher compression ratio when compared
to the previous algorithms [1]–[4]. Based on more efficient
templates, three novel algorithms [10]–[13] have been pro-
posed to improve the compression performance of the JBIG for
compressing error-diffused images. Using a 12-pixel template,
Reavy and Boncelet [10] presented an efficient block-based
arithmetic coding algorithm. For convenience, their proposed
coding algorithm is called the block arithmetic coding for image
compression (BACIC) algorithm. In [11], the same 12-pixel
template was used for compressing error-diffused images. Lee
and Park [12] presented a two-pass coding algorithm, each
pass associated with a different template, for compressing
error-diffused images. For convenience, the coding algorithm
proposed by Lee and Park is called the two-pass arithmetic
coding for image compression (PACIC) algorithm. Based on
the PACIC algorithm, Lee and Park [13] further proposed a
progressive coding algorithm to extend the capability of the
PACIC algorithm to cover the progressive image transmission.
In the JBIG, the BACIC algorithm, the PACIC algorithm, and
the progressive coding algorithm [13], the used templates are
fixed and cannot reflect texture features completely for different
binary patterns in error-diffused images. Martins and Forch-
hammer [14] proposed a free tree-based algorithm to compress
error-diffused images. For convenience, the coding algorithm
proposed by Martins and Forchhammer is called the free tree
arithmetic coding for image compression (FACIC) algorithm.
Experimental results demonstrate that the FACIC algorithm
has better compression ratio when compared to the JBIG, the
BACIC algorithm, and the PACIC algorithm. However, the
FACIC algorithm needs a lot of time to complete the online
training phase for each input error-diffused image in order to

1057-7149/$25.00 © 2007 IEEE



HUANG AND CHUNG: TEXTURE- AND MULTIPLE-TEMPLATE-BASED ALGORITHM 1259

build up the near-optimal tree where each leaf is the constructed
context, and, thus, the encoding time required in the FACIC
algorithm is much slower than that in the JBIG, the BACIC
algorithm, and the PACIC algorithm.

In this paper, we first present a novel block- and texture-
based approach to train the multiple-template from the training
set of error-diffused images in an offline training way. In our
proposed block- and texture-based training approach, the mul-
tiple-template is constructed for the most representative tex-
ture features. Based on the constructed multiple-templates, we
next present an efficient texture- and multiple-template-based
(TM-based) coding algorithm, called the TMCIC algorithm, for
lossless compression of error-diffused images. In our proposed
TMCIC algorithm, the input error-diffused image is first di-
vided into many blocks and for each block, the best template
is adaptively selected according to the texture feature of that
block. Based on 20 testing error-diffused images and the per-
sonal computer with Intel Celeron 2.8-GHz CPU, experimental
results demonstrate that with a little encoding time degradation,
0.365 s (0.901 s) on average, the compression improvement ratio
of our proposed TMCIC algorithm over the JBIG standard (over
the BACIC algorithm) is 24% (19.4%). Further, experimental
results also demonstrate that the compression improvement ratio
of our proposed algorithm over the previous PACIC algorithm
is 17.6% and still only has a little encoding time degradation
(0.775 s on average). The encoding time required in the pre-
vious FACIC algorithm is 109.131 s on average while our pro-
posed algorithm takes 0.995 s; the compression performance of
our proposed TMCIC algorithm is quite competitive to that of
the FACIC algorithm.

The remainder of this paper is organized as follows. In
Section II, we survey the previous four concerned coding
algorithms for lossless compression of error-diffused images.
In Section III, our proposed TMCIC algorithm is presented.
Section IV demonstrates the performance comparison among
our proposed TMCIC algorithm and the previous four algo-
rithms. Section V addresses some concluding remarks.

II. PAST FOUR WORKS: JBIG, BACIC, PACIC,
AND FACIC ALGORITHMS

For lossless compression of error-diffused images, based on
the context-based arithmetic coding, the past four works, the
JBIG [9], the BACIC algorithm [10], the PACIC algorithm [12],
and the FACIC algorithm [14], are surveyed in this section.
Since the main concern of this paper is focused on the com-
pression and execution time performance, the survey of the pro-
gressive coding algorithm proposed by Lee and Park [13] is not
considered in this section.

Fig. 1. Templates used in JBIG and BACIC algorithm. (a) Template T used
in JBIG. (b) Template T used in BACIC algorithm.

A. JBIG and the BACIC Algorithm

The JBIG uses a ten-pixel template [see Fig. 1(a)] to gen-
erate contexts for encoding
a input error-diffused image in raster scan order. In
Fig. 1(a), denotes the position of the current encoded
pixel and . For the cur-
rent encoded pixel , the ten offsets con-
stitute the ten-pixel template where the ten offsets are de-
noted by ,
and . From the current pixel associated with
its own template , the mapping address of in the con-
texts is defined by

(1)

Once the mapping address of , i.e., , is computed by (1),
the value of is assigned to the context and the proba-
bility of in is updated for arithmetic coding according
to the Bayesian rule in (2), shown at the bottom of the page,
where denotes the number of zeros (ones) as-
signed to the context right before encoding and the
value of is set to 0.45 in the JBIG.

Different from the template used in the JBIG, the
BACIC algorithm by Reavy and Boncelet adopts a dif-
ferent 12-pixel template as shown in Fig. 1(b). In ,
there are 12 offsets and they are denoted
by ,
and . According to , the mapping ad-
dress of the current encoded pixel in the contexts

is given by .
After calculating the mapping address, is assigned
to the context and the probability of in is up-
dated according to (3), shown at the bottom of the next page,
where empirically is set to 0.006 and and
are calculated by and

, respectively. Initially,
and are set to 1; the forgetting factor is set to 0.985,
and it implies that the influence of the recent pixels is more
important than that of the earlier pixels. Due to the adopted
12-pixel template and the probability rule, experimental results

if

otherwise
(2)



1260 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 5, MAY 2007

Fig. 2. Templates used in PACIC algorithm. (a) Template T used in first pass.
(b) Template T used in second pass.

have demonstrated that the BACIC algorithm has better com-
pression performance than the JBIG.

B. PACIC Algorithm

Based on the two-pass approach, Lee and Park presented
a PACIC algorithm to compress the error-diffused images.
According to the experimental results, the PACIC algorithm
has better compression performance than those in the JBIG
and the BACIC algorithm. In the PACIC algorithm, the input
image is first divided into many 2 2 blocks, and for each
block, the number of black pixels (or white pixels) is en-
coded by the first pass. Let denote the current block
at position , where and

, and the 2 2 block is expressed
by

where denotes the position of the th pixel in
the block, . For the current block , the
number of ones in is called the -value and it is defined
by . For
the current block , Fig. 2(a) shows the template used
in the first pass and it consists of four offsets
where , and

. Since the values of range from 0 to
4, the number of the contexts associated with the template is

. According to , the mapping address of
in the contexts is given by

(4)

Once the value of is obtained by (4), is assigned to
the context and the probability of in is updated
according to the following rule:

(5)

where denotes the number of the blocks whose -values
are equal to before encoding .

In the second pass, Lee and Park define a four-digit bi-
nary number to represent the so-called -value which

is used to represent the four bits in the block .
Thus, the C-value of is denoted by

. Fig. 2(b) shows
the template used in the second pass, and it consists
of two offsets where and

. The number of contexts in the second pass is
dependent on the S-value of the current block and the
two C-values and . Therefore,
the number of contexts is . According
to the template and , the mapping address of

in the contexts is defined by

(6)

Thus, we assign to the context and the probability
of in is updated according to the following rule:

(7)

where denotes the number of blocks whose values
are equal to s before encoding . Experimental results
demonstrate that the compression performance of the PACIC
algorithm is superior to that of the JBIG and is quite competitive
to that of the BACIC algorithm.

C. FACIC Algorithm

In the FACIC algorithm, a free tree is constructed by using
the online training and the constructed free tree is used to im-
prove the compression performance of the JBIG. The FACIC
algorithm also has better compression performance when com-
pared to the BACIC algorithm and the PACIC algorithm. How-
ever, the time requirement of the FACIC algorithm is much
more than those in the JBIG, the BACIC algorithm, and the
PACIC algorithm. Fig. 3 shows an example of the free tree
where the leaf nodes denote the nine contexts
and each internal node is corresponding to one of the five offsets

where ,
and . To select a context for the current pixel

, we traverse the free tree from the root to one leaf such
that the path from the root to that leaf meets the binary sequence
corresponding to the neighboring pixels of . For example,
if the values of , and are
1, 0, and 0, respectively, the context is selected to the current
pixel because the traversing path is 100.

In order to obtain the offsets used
in the free tree, a search template (see Fig. 4) consisting of

offsets
is used to determine the candidates for selecting
these offsets, i.e.,

. The free tree corre-
sponding to the input image is constructed by using a top-down

if

otherwise
(3)



HUANG AND CHUNG: TEXTURE- AND MULTIPLE-TEMPLATE-BASED ALGORITHM 1261

Fig. 3. Example of a free tree.

Fig. 4. Search template for free tree construction.

approach. Considering an offset within , each time a
context corresponding to a leaf node will be split into
two contexts and corresponding to two new leaf nodes
called and , respectively. To maximize the compression
performance, the selected offset for splitting must
maximize the following compression gain:

(8)

where and denote the code lengths required
for encoding the pixels which are assigned to and ,
respectively; denotes the cost for recording the se-
lected offset . The code length can be defined as follows:

(9)

where denotes the th encoded pixel in ; denotes the
total number of encoded pixels in , and can be
calculated by (2). and can be calculated by the same
way as in (9). Once the best candidate offset is determined,
it is regarded as one of the offsets .
Continue this greedy way, the free tree is growing until no con-
text (leaf node) could be split to result in a positive gain. Based
on the constructed free tree, the FACIC algorithm selects the
context for each encoded pixel in the input image.

The drawback of the FACIC algorithm is that it spends
much time for constructing a free tree for each input image.
In Section III, based on an offline training, our proposed

TMCIC algorithm is presented to construct multiple-template
for different texture features. Experimental results demonstrate
that the encoding time requirement of our proposed TMCIC
algorithm is much less than that in the FACIC algorithm, but
the compression ratio of our proposed TMCIC algorithm is
quite competitive to that of the FACIC algorithm. With a little
encoding time degradation, our proposed TMCIC algorithm
has better compression ratio when compared to the JBIG, the
BACIC algorithm, and the PACIC algorithm.

III. OUR PROPOSED TMCIC ALGORITHM

As shown in Fig. 5, our proposed TMCIC algorithm is com-
posed of the training stage, the encoding stage, and the decoding
stage. Based on the block-based offline training strategy, the
proposed training stage can classify the most representative tex-
ture features from a set of training images. Next, an efficient
method is used to construct the template for each classified tex-
ture feature. To improve the compression performance of the
context-based arithmetic coding, for each context determined
by the constructed multitemplate, the probability of zeros (ones)
in each context has also been estimated in training stage. In the
encoding stage, the input image is divided into many blocks,
and for each block, the best template will be adaptively selected
from the constructed multiple-template according to the texture
feature of that block. Once the best template has been deter-
mined, the address of the template is recorded and then the es-
timated probabilities of pixel values in each context are used to
initialize the arithmetic coder. In decoding stage, for each block,
the address of the best template is read and the initialization of
the arithmetic coder is performed.

A. Training Stage

The block diagram for the training stage of our proposed
TMCIC algorithm is shown in Fig. 6. After dividing each
training image into the set of training blocks, our
proposed training stage first classifies the most representative
texture features from the training blocks. Empirically, we set

. Let denote the
set of training blocks where denotes the th training
block in . To analyze the texture feature of , we apply
four-level CDF 9/7 wavelet transform [15] to decompose
into 13 subbands where denotes

the low-frequency subband and denote 12
high-frequency subbands. Let



1262 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 5, MAY 2007

Fig. 5. Block diagram of the proposed TMCIC algorithm.

denote the texture feature of where is defined as
follows:

(10)

where denotes the coefficient at position in

and denotes the absolute value of ; de-

notes the number of coefficients in the subband .
By (10), each block has its own texture feature. To

classify the most representative texture features from
, based on the vector quantiza-

tion technique, we quantize these texture features into
texture features. Empirically, is set to 48.

Here, an efficient and robust method, namely the minimax par-
tial distortion competitive learning (MMPDCL) method [16],
is adopted for vector quantization. Collecting these quan-
tized texture features, our proposed training stage constructs
a set of representative texture features denoted by the set

. Further, ac-
cording to the quantized texture features , the training blocks

can be grouped into clusters and
each cluster contains blocks with the similar texture
feature.

As shown in Fig. 6, after all training blocks have been clus-
tered by using the MMPDCL method, we then construct the
multiple-template for the
representative texture features
by using our proposed multiple-template construction proce-
dure. Let be the size of each constructed template ,
where is a -pixel template, and then a search tem-
plate (see Fig. 4) consisting of offsets

is used to determine

the candidates for selecting offsets for each constructed
template . Empirically, is set to 12. Our proposed
multiple-template construction procedure is represented by the
following procedure TEMP-CONST.

PROCEDURE TEMP-CONST

1for to do

2

3

4 for to do

5 /*Initialize the minimal entropy to */

6 Create contexts

7 for each offset do

8

9 for each block do

10 Using , assign each pixel to one of

11 Calculate the expected entropy of
/*see (12)*/

12 if then

13

14

15

16

In the TEMP-CONST procedure, we use the variable ranged
from 0 to in line 1 to select a texture feature . For the
selected texture feature , the corresponding cluster of blocks



HUANG AND CHUNG: TEXTURE- AND MULTIPLE-TEMPLATE-BASED ALGORITHM 1263

Fig. 6. Block diagram of the proposed training stage.

is used for constructing the template . In line 2, the tem-
plate corresponding to the texture feature is initialized
as an empty set. A set of offsets are assign
to the search template (see line 3). The template is con-
structed progressively by performing the loop containing lines
4-16. In line 4, we use the variable to increase the template
size from 1 to progressively. For each loop iteration, the th
offset in the constructed template is determined from the
search template according to the expected entropy obtained
by (12). In line 5, the initial minimal entropy value is set
to . In line 6, contexts are cre-
ated. In line 7, an offset is selected from each time, and
then a new -pixel template is constructed by uniting the tem-
plate with the new offset (see line 8). For convenience,
we use to represent these offsets in
the new template . Let denote the pixel at position

in the block and
. For each , we utilize to compute the

address of the context for the pixel and the address of
is given by

(11)

where denotes the position . Since each block is
treated separately, when considering the pixels at block bound-

aries, we set if is not within . After all
pixels in the cluster of blocks have been assigned to the cor-
responding contexts, in line 11, the expected entropy of the
contexts is computed by

(12)

We use to denote the offset which causes the current min-
imal entropy before has been selected to compute the
entropy . In line 12, the entropy is compared to the current
minimum entropy . If , the compression per-
formance caused by selecting the offset is better than that
caused by selecting the offset . Thus, we set and

in lines 13-14 to record the current best selection of
offsets. After all offsets in have been checked, the th best
offset is recorded in and it is inserted into (see line 15).
In line 16, the selected offset is taken from the search tem-
plate to avoid checking again in next iteration. By per-
forming the loop consisting lines 4-16, the -pixel template

can be constructed iteratively. Returning to line 1, we in-
crease the variable by 1 to construct the template for
the texture feature . Continuing the loop from line 1 to line
16, finally the multiple-template can be constructed.

Since the general arithmetic coding starts with a uniform
probability distribution, the compression performance will be



1264 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 5, MAY 2007

Fig. 7. Block diagram of the proposed encoding and decoding stage.

degraded in the early encoding stage. In order to resolve this
problem, the probability of zeros (or ones) in each context de-
termined by is estimated using the nonuniform probability
distribution to initialize the arithmetic coding. In line 11, the
probability can be obtained by computing the entropy
via (12). Thus, for the constructed template is
used to estimate the probability of zeros in the context and
in lines 12-14, the original three statements are modified into
the following six lines to estimate the probability .

12 if then

13

14(a)

14(b) if

14(c) for to

14(d)

After the estimated probability is obtained,
can be calculated by . For convenience, let

denote the set of estimated
probabilities for the contexts determined by the template

. In other words, for a block whose texture feature belongs

to , the template is selected to code this block and the
probabilities of zeros in the contexts
can be estimated by . Further, for the constructed multiple-
template

is used to denote the set of all estimated probabilities
of zeros in the contexts determined by .

Although our proposed training stage takes much time to
obtain the most representative texture features , the mul-
tiple-template , and the estimated probabilities , it only
needs to perform the training stage once and the training results
can be reused again and again to code error diffused-images
repeatedly. For example, given a block in any input error-dif-
fused image, we first obtain its texture feature and then find the
best matched texture feature from the set . According to
the matched , we select and as the best template and
the corresponding estimated probabilities, respectively, for en-
coding this block. Therefore, the time required in our proposed
training stage can be ignored.

B. Encoding and Decoding Stages

As shown in Fig. 7, the encoding stage divides the input
error-diffused image into blocks and each block
is encoded independently. Since the encoding of each block
is independent, for convenience, we define the block
to be the th encoded block in the input image. Running the
four-level CDF 9/7 wavelet transform on , the 13 subbands



HUANG AND CHUNG: TEXTURE- AND MULTIPLE-TEMPLATE-BASED ALGORITHM 1265

Fig. 8. Five 64� 64 blocks with different texture features.

Fig. 9. Five best templates selected by our proposed TMCIC algorithm for Fig 8.

of are used to calculate the texture
feature by (10). Comparing

to each texture feature of , the address of the best
template for can be determined by

(13)

To improve the compression performance of context-based
arithmetic coding, the set of estimated probabilities
is used to initialize the number of zeros (ones) in the contexts

. Let and denote the ini-
tial number of ones and zeros in the context . According to

and can be calculated by

(14)

where is set to 50 empirically. From
, and , we encode each pixel in the

block in raster scan order. Let denote the current
pixel at position in the block . By the same way as in
(11), we assume that is assigned to the contexts ,
and then the probability of in can be calculated by
(15), shown at the bottom of the page, where

denotes the number of zeros (ones) encoded in context be-
fore encoding . After all pixels in have been en-
coded, our proposed encoding stage records the bitstream
obtained by the arithmetic coding, the length of the bistream

, and the template address , and then the next block is se-
lected to encode. The above block-based encoding process is
performed successively until all blocks in the input image are
encoded.

In the decoding stage, we first read the bitstream size ,
and then the bitstream with size is read for decoding
the block . The best template used in is also se-
lected by reading the recorded template address . The number
of ones and zeros in each context can be initialized by (14).
Thus, all pixels in can be decoded from the bitstream by
using the context-based arithmetic decoding, and then the data
related to the next block will be read for decoding. Performing
the above block-based decoding process successively, all blocks
in the image can be decoded by our proposed decoding stage.

IV. EXPERIMENTAL RESULTS

In this section, the results of our proposed training stage are
given in the first subsection to demonstrate that the constructed
multiple-template can reflect the most representative texture
features. Next, the compression performance comparison
among the JBIG, the BACIC algorithm, the PACIC algorithm,

if

otherwise
(15)



1266 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 5, MAY 2007

TABLE I
SIZES OF THE BITSTREAMS IN TERMS OF BYTES OBTAINED

BY CODING THE BLOCKS WITH DIFFERENT TEMPLATES

TABLE II
COMPRESSION RATIOS OF THE JBIG, THE BACIC ALGORITHM,

THE PACIC ALGORITHM, THE FACIC ALGORITHM,
AND OUR PROPOSED TMCIC ALGORITHM

the FACIC algorithm, and our proposed TMCIC algorithm are
demonstrated in the second subsection. All the experiments are
implemented by using the personal computer with Intel Celeron
2.8-GHz CPU and the Borland C builder 6.0 programming
language.

A. Results of Our Proposed Training Stage

In the implementation of our proposed training stage, the
Jarvis error diffusion scheme [17] is performed on sixty
768 512 real images [18] to obtain the input error-diffused
training images. Dividing each error-diffused training image
into 96 training blocks, each with size 64 64, we can totally
obtain 5760 training blocks. Empirically, the number of the
most representative texture features is set to 48. Thus,
we can obtain 48 texture features and the training blocks are
grouped into 48 clusters for constructing the multiple-template.

TABLE III
ENCODING TIME OF THE JBIG, THE BACIC ALGORITHM, THE PACIC

ALGORITHM, THE FACIC ALGORITHM, AND OUR PROPOSED

TMCIC ALGORITHM IN TERMS OF SECONDS

In our experiment, the proposed training stage spends 28
minutes on the texture classification and the multiple-template
construction. Once the texture classification and the mul-
tiple-template construction have been done, their results can
be reused again and again. Therefore, the time spent on the
training stage is not considered in the encoding time. Fig. 8
shows five 64 64 blocks with different texture features.
From our training results, the five best templates as shown in
Fig. 9(a)–(e) are selected to encode Fig. 8(a)–(e), respectively.

For each template in Fig. 9, denotes the th offset se-
lected by the TEMP-CONST procedure which has been de-
scribed in Section III-A. denote the blocks
as shown in Fig. 8(a)–(e) and the best selected templates as
shown in Fig. 9(a)–(e) are denoted by , re-
spectively. In order to demonstrate that the selected template

can efficiently reflect the texture features of , some
experiments are given as follows. For each block , we en-
code five times by using the templates , and

, respectively. Let denote the bitstream obtained by en-
coding the block using the template , and de-
notes the size of . Thus, totally, we can obtain 25 bitstreams

and the sizes of these 25 bitstreams in terms
of bytes are shown in Table I. Each entry in Table I denotes the
bitstream size . From the bitstream sizes shown in Table I,
it is observed that for block , the condition is
held when . This observation reveals that the best selected
template efficiently reflects the texture features of the block

. In other words, the multiple-template constructed by our



HUANG AND CHUNG: TEXTURE- AND MULTIPLE-TEMPLATE-BASED ALGORITHM 1267

Fig. 10. Twenty testing images for evaluating the performance of different compression algorithms.

proposed training stage provides a template set in which the best
template can be selected based on the texture feature of each
input block.

B. Compression Performance Comparison

In this subsection, some experiments are carried out to com-
pare the performance among the JBIG, the BACIC algorithm,
the PACIC algorithm, the FACIC algorithm, and our proposed
TMCIC algorithm. For easy implementation, we use the basic
arithmetic coding algorithm [19] to implement our proposed
TMCIC algorithm. For speeding up the encoding-time of our
proposed algorithm, maybe the QM-coder used in JBIG and the
MQ-coder used in JBIG2 [20] can be adopted to achieve this goal.

In our experiments, 20 Jarvis error-diffused images as shown
in Fig. 10 are used to evaluate the compression performance
and each of the 20 testing images is not contained in the
sixty training images used in the training stage. Among these
20 testing images, thirteen 512 512 images are shown in
Fig. 10(a)–(k); two 1024 1024 images are shown in Fig. 10(l)
and Fig. 10(m); seven 2560 1600 images [21] are shown in
Fig. 10(n)–(t).

After running the above five concerned algorithms on the
error-diffused images as shown in Fig. 10, the compression

ratio comparison and the encoding time comparison are shown
in Tables II and III, respectively. From Tables II and III, it is
observed that with a little encoding time degradation, 0.365,
0.901, and 0.775 s on average, the average compression im-
provement ratios of our proposed TMCIC algorithm over the
JBIG, the BACIC algorithm, and the PACIC algorithm are

% %
and % , respectively. Further, the
encoding time required in the previous FACIC algorithm is
109.131 s on average while our proposed algorithm takes
0.995 s; the average compression ratio of our proposed TMCIC
algorithm, 1.60, is quite competitive to that of the FACIC
algorithm, 1.62.

Besides the compression ratio, the issue on the near-lossless,
progressive and scalable coding is also important for some ap-
plications. The JBIG provides the multilayer coding scheme,
from the lower image resolution layer to higher image resolu-
tion layer, to support the above three functionalities. The BACIC
algorithm cannot provide the the near-lossless, progressive and
scalable coding since it utilizes one-pass coding scheme with the
conventional context template. The PACIC algorithm [12] and
its extended version [13] have the above three functionalities
due to adopting the concept of S-value and C-value. The input



1268 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 5, MAY 2007

image is scaled into a quarter of the original size by using the
S-value and this scaling pass can be performed several times if
necessary. In addition, since the S-value can be used to help the
prediction of the C-value, the PACIC algorithm and its extended
version have better compression performance when compared
to the JBIG and the BACIC algorithm. Due to lacking the mul-
tilayer concept, such as the S-value and C-value, our proposed
algorithm has no such three functionalities. The main advantage
of our proposed TMCIC algorithm is that its compression ratio
is quite competitive to that of the FACIC algorithm and the time
required in our proposed TMCIC algorithm is much less than
the that in the FACIC algorithm. In summary, the PACIC algo-
rithm and its extended version can work well in the near-loss-
less, progressive and scalable coding applications. However, our
proposed TMCIC algorithm can achieve better performance in
the low bitrate environment.

V. CONCLUSION

In this paper, our proposed TMCIC algorithm has been
presented for lossless compression of error-diffused images.
Based on the training blocks, our proposed TMCIC algorithm
can construct the multiple-template in which the best template
can be selected to reflect the texture feature of each input block.
This leads to high compression performance. Experimental
results demonstrate that with a little encoding-time degradation,
our proposed TMCIC algorithm has 24%, 19.4%, and 17.6%
average compression improvement ratios when compared to
the JBIG, the BACIC algorithm, and the PACIC algorithm,
respectively. Further, the encoding time required in the previous
FACIC algorithm is 109.131 s on average while our proposed
algorithm takes 0.995 s; the average compression ratio of our
proposed TMCIC algorithm, 1.60, is quite competitive to that
of the FACIC algorithm, 1.62.

Because the binary patterns in text images are dependent on
the font types and font sizes, this causes the categories of tex-
ture features in the text images are much more than those in the
error-diffused images. Thus, our proposed training stage is so
suitable for text images as it is for error-diffused images. We
can modify our proposed texture classification method to seg-
ment the document image into the error-diffused image part and
the text part. Consequently, our proposed TMCIC algorithm can
be used to compress the error-diffused image part; some existing
methods, such as the pattern-matching techniques used in JBIG2
[20], can be used to compress the text part.

REFERENCES

[1] Standardization of Group 3 Facsimile Apparatus for Document Trans-
mission, ITU-T Recommendation T.4, 1980.

[2] Facsimile Coding Schemes and Coding Control Function for Group 4
Facsimile Apparatus, ITU-T Recommendation T.6, 1984.

[3] G. R. Robertson, M. F. Aburdene, and R. J. Kozick, “Differential block
coing of bilevel images,” IEEE Trans. Image Process., vol. 5, no. 9, pp.
1368–1370, Sep. 1996.

[4] M. D. Swanson and A. H. Tewfik, “A binary wavelet decomposition
of binary images,” IEEE Trans. Image Process., vol. 5, no. 12, pp.
1637–1650, Dec. 1996.

[5] M. N. Gurcan, O. N. Gerek, and A. E. Cetin, “Binary morpholog-
ical subband decomposition for image coding,” in Proc. IEEE Signal
Process. Int. Symp. Time-Frequency and Time-Scale Analysis, 1996,
pp. 357–360.

[6] J. Rissanen and G. G. Langdon, Jr., “Universal modeling and coding,”
IEEE Trans. Inf. Theory, vol. 27, no. 1, pp. 12–23, Jan. 1981.

[7] J. Rissanen, “A universal data compression system,” IEEE Trans. Inf.
Theory, vol. IT-29, no. 5, pp. 656–664, Sep. 1983.

[8] ——, “Complexity of strings in the class of Markov sources,” IEEE
Trans. Inf. Theory, vol. 32, no. 5, pp. 526–532, Jul. 1986.

[9] Coded Representation of Picture and Audio Information-Progressive
Bi-Level Image Compression, ISO/IEC Int. Std. 11544, 1993.

[10] M. D. Reavy and C. G. Boncelet, “An algorithm for compression
of bilevel images,” IEEE Trans. Image Process., vol. 10, no. 5, pp.
669–676, May 2001.

[11] K. Nguyen-Phi and H. Weinrichter, “A new binary source coder and its
application in bi-level image compression,” in Proc. GLOBALCOMM,
1996, vol. 3, pp. 1483–1487.

[12] C. S. Lee and H. Park, “Near-lossless/lossless compression of error-dif-
fused images using a two-pass approach,” IEEE Trans. Image Process.,
vol. 12, no. 2, pp. 170–175, Feb. 2003.

[13] C. S. Lee and H. Park, “Progressive coding of error-diffused bilevel
images,” J. Electron. Imag., vol. 12, pp. 173–178, Jan. 2003.

[14] B. Martins and S. Forchhammer, “Tree coding of bilevel image,” IEEE
Trans. Image Process., vol. 7, no. 4, pp. 517–528, Apr. 1998.

[15] A. Cohen, I. Daubechies, and J. C. Feauveau, “Biorthogonal bases of
compactly supported wavelets,” Commun. Pure Appl. Math., vol. 45,
pp. 485–560, June 1992.

[16] C. Zhu and L. M. Po, “Minimax partial distortion competitive learning
for optimal codebook design,” IEEE Trans. Image Process., vol. 5, no.
10, pp. 1400–1409, Oct. 1998.

[17] R. Ulichney, Digital Halftoning. Cambridge, MA: MIT Press, 1987.
[18] [Online]. Available: http://www.systems.caltech.edu/mese/halftone/.
[19] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data

compression,” Commun. ACM, vol. 30, pp. 520–540, Jun. 1987.
[20] JBIG2 Final Draft International Standard, ISO/IEC JTC1/SC29/WG1

N1545, 1999.
[21] [Online]. Available: http://interfacelift.com/wallpaper/.

Yong-Huai Huang received the B.S. degree in
information management from Aletheia Universit,
Taipei, Taiwan, R.O.C., and the M.S. degree in
computer science and information engineering
from National Taiwan University of Science and
Technology University, Taipei, where he is currently
pursuing the Ph.D. degree.

His research interests include image processing,
image compression, and algorithms.

Kuo-Liang Chung (SM’01) received the B.S., M.S.,
and Ph.D. degrees in computer science and informa-
tion engineering from the National Taiwan Univer-
sity, Taipei, Taiwan, R.O.C., in 1982, 1984, and 1990,
respectively.

In 1986, he completed his military service. From
1986 to 1987, he was a Research Assistant with the
Institute of Information Science, Academic Sinica,
Taiwan. He was a Chairman with the Department of
Computer Science and Information Engineering, Na-
tional Taiwan University of Science and Technology,

from 2003 to 2006. His research interests include image/video compression,
image/video processing, pattern recognition, coding theory, algorithms, and
multimedia applications.

Prof. Chung received the Distinguished Research Award (2004–2007) from
the National Science Council, Taiwan.


